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Spatiotemporally chaotic dynamics in laboratory experiments on convection are characterized using a

new dimension, DCH, determined from computational homology. Over a large range of system sizes, DCH

scales in the same manner as DKLD, a dimension determined from experimental data using Karhuenen-

Loéve decomposition. Moreover, finite-size effects (the presence of boundaries in the experiment) lead to

deviations from scaling that are similar for both DCH and DKLD. In the absence of symmetry, DCH can be

determined more rapidly than DKLD.
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Characterizing data from experiments on spatially ex-
tended nonequilibrium systems is a challenge [1]. Methods
devised to extract information from low-dimensional
systems [2] fail as the number of dynamical degrees of
freedom (DOF) increases. Recently, methods have been
developed to determine the number of DOF in numerical
simulations [3–8]; these methods suggest that the already
large number of DOF grow still larger as the system size
increases, i.e, the number of DOF in spatially extended
systems is an extensive quantity. The techniques for
measuring the number of DOF in simulations require
very precise control of the initial conditions and, there-
fore, cannot be used in most experimental systems.
Experimentally accessible methodologies are needed to
characterize the number of DOF efficiently in large experi-
ment data sets not only to measure how DOF scale with
system size, but also to detect the impact of finite-size
effects (always present in experiments) on the behavior
of the number of DOF.

In this Letter, we show, for the first time, that the impact
of finite-size effects on the dynamics of a spatiotemporally
chaotic system can be characterized quantitatively. This
characterization was performed in two very different meth-
ods: (1) By using the well-established pattern character-
ization tool, Karhunen-Loève decomposition (KLD) [9] to
compute the KLD dimension DKLD [10], and (2) by apply-
ing the tools of algebraic topology (computational homol-
ogy) [11] to compute a novel topological dimension DCH

(defined below). Both measures of dynamical dimension
not only show the system is extensively chaotic but also
exhibit the same quantitative deviation from scaling due to
the presence of system boundaries. This suggests our ap-
proach to describing finite-size effects should be indepen-
dent of the particular method used to characterized the
dimensionality of the dynamics.

Computational homology (CH) based on algebraic to-
pology is a metric-independent characterization technique
that aims to measure the complexity of the geometry of the

structures in high-dimension systems [11]. Homology
computations, in an N dimensional topological space X,
produce a set of N non-negative integers �kðXÞ (k ¼
0; 1; . . . ; N � 1) known as Betti numbers. Each �kðXÞ
characterizes a unique topological property of X and a
set of Betti numbers provides a reduced description for
X. Two distinct, two-dimensional topological spaces can
be obtained from each shadowgraph image (Fig. 1) of
spatiotemporally chaotic convective flow; specifically, im-
age pixels whose intensity are lower (higher) than the
median intensity for a given image belong to the cold

FIG. 1. Shadowgraph patterns of SDC at � ¼ 0:8, (a) from
data sets D-I (b) from D-II, (c) from D-III, and (d) from D-IV.
Bright and dark regions represent hot and cold flows, respec-
tively. The median value of intensity in an image is used as a
threshold value to form two distinct binary images that represent
topological spaces for hot Xh and cold flows Xc, respectively.
Homology analysis yields the following topological states
for the entire patterns, f�0c; �1c; �0h; �1hg: (a) f64; 2; 29; 13g,
(b) f61; 4; 35; 6g, (c) f42; 3; 28; 8g, and (d) f43; 4; 44; 4g see
Ref. [19] for more details.
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(hot) topological space Xc (Xh). Homology computations
yield two characteristic Betti numbers for each space: �0c

(�0h) which counts the number of distinct connected cold
(hot) components and �1c (�1h) which counts the number
of cold (hot) holes formed within Xc (Xh). Alternatively,
�1c (�1h) counts the number of hot (cold) connected
regions completely surrounded by cold (hot) flow. We
use the quartet f�0c; �1c; �0h; �1hg to define the CH state
of the convection pattern at the instant of time when the
pattern’s image is recorded. The time evolution of CH
states is characterized by successive computations of
Betti numbers from a time series of images; the number
of distinct CH states are counted, thereby, yielding an
estimate of pk, the probability of occurrence for a given
state. We introduce a positive integer DCH as a function
of f:

DCH ¼ min

�
k:

Xkþ1

k¼1

pk > f

�
(1)

which defines the minimum number of CH states k needed
to capture some fraction f � 1 of the total probability.
Here, we use DCH to measure the spatiotemporal disorder
of an extensively chaotic experimental system.

KLD analysis is widely used to extract important dy-
namical modes from data sets. To analyze shadowgraph
data using KLD, an ensemble of space-time data uðx; tÞ is
first formed from the intensity arrays uðxi; tjÞ, which rep-

resent the pixel value recorded at position xi at time tj. The

eigenvectors as KLD modes with associated eigenvalue �
are generally obtained from an eigendecomposition of the
tensor huðx; tÞ � uðx0; tÞi, which is built by the two-point
correlation of the elements of uðx; tÞ averaged over time
[9]. Conventional KLD algorithms are computationally
intensive on large data sets and generally done using a
singular value decomposition and hence is of order n3

where n is the number of pixels in both space and time.
In order to overcome this problem we implement a modi-
fied KLD algorithm proposed by Duggleby and Paul [12]
for numerical data that exploits the azimuthal symmetry
for a rotationally invariant experimental system. This re-
sults in a small eigenvalue problem; for each wave number
n one must analyze the tensor hûnðr; tÞ � û�nðr0; tÞi, where
ûnðr; tÞ is the Fourier transform of uðx; tÞ in the azimuthal
direction and the asterisk denotes the complex conjugate.
In computations the eigenvalues are arranged in descend-
ing order and normalized by the sum of all the eigenvalues.
The KLD dimension DKLD [10]

DKLD ¼ min

�
m:

Xmþ1

m¼1

�m > f

�
(2)

defines the minimum number of KLD modesm required to
capture some fraction f � 1 of the total eigenvalue spec-
trum. A numerical study by Zoldi and Greenside [10] on a
homogeneous extended chaotic system showed that the

Lyapunov dimension D� (the number of dynamical DOF
captured by the Lyapunov exponents [2]) and DKLD dem-
onstrate analogous extensivities. D� and DKLD scale line-
arly at similar rates with either size (area) of the entire
system or size of a sufficiently large subsystem in a fixed
system size.
Rayleigh-Bénard convection (RBC) of a horizontal fluid

layer heated from below is considered a paradigm to
investigate the nature of pattern formation, and has moti-
vated numerous numerical and laboratory studies [13]. We
study RBC experimentally in a cylindrical convection cell
of aspect ratio � � r0=d (radius to depth ratio) in which a
compressed gas is confined. A similar set up is described in
detail by de Bruyn et al. [14]. Patterns of convective flows
are acquired by controlling the reduced Rayleigh number
� ¼ ð�T ��TcÞ=�Tc above the onset of convection that
occurs at a critical temperature difference�Tc between top
and bottom of the cell. We analyze the convection in the
state known as spiral defect chaos (SDC) [15]. In order to
study extensivity in SDC, four large sets of spatiotempor-
ally chaotic data are acquired in different experiments as
described in Table I. Data sets D-I and D-III are taken in
two different � cells where gaseous CO2 is bounded by a
lateral wall made of filter paper. Data set D-II is obtained in
the same cell with gaseous SF6 while D-IV is acquired in
an experiment performed with SF6 and a plastic (polye-
thersulfone) sidewall [16]. The thermal conductivities of
the paper and of the plastic walls are, respectively, about a
factor of 4 and 10 times larger than the thermal conduc-
tivity of the fluid used. Sample patterns are shown in Fig. 1.
CH and KLD provide very different methods for analyz-

ing convection patterns; nevertheless, we find DKLD and
DCH increase in a similar manner as new degrees of free-
dom are added. We explore extensivities of DKLD and DCH

for different subsystem sizes in D-I, which are obtained by
sampling the data spatially with a circular window of
increasing radii r, measured in units of depth d from the
cell center. We work with a fixed fraction f ¼ 0:7 [17] to
compute DKLD and DCH from the eigenvalue spectra and
the probability distributions, respectively, for each subsys-
tem. We find that, over a large range of subsystem sizes,

TABLE I. SDC data taken in four different experimental cells
at � ¼ 0:8 with the aspect ratio �, the fluid and the sidewall used.
Pr is the Prandtl number and t is the observation time in units of
the horizontal diffusion time th ¼ �2tv. The vertical diffusion
time tv is the order of seconds. N is the number of images
captured for computations.

Data set � Fluid Sidewall Pr t=th N=103

D-I 35 CO2 Paper 0.98 451 100

D-II 35 SF6 Paper 0.87 20 3

D-III 30 CO2 Paper 0.98 50 15

D-IV 30 SF6 Plastic 0.95 130 105
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DKLD scales extensively with the area of the system A / r2

(Fig. 2), consistent with the results of KLD analyses in
previous numerical and experimental studies that strongly
suggest that the state of SDC is extensively chaotic [10,17].
We find that DCH also provides strong evidence for exten-
sive chaos; DCH also scales extensively with r2 over sub-
stantially the same broad range of subsystem sizes as
DKLD (Fig. 2).

Computational homology offers us a way to measure
dimensions that converges more rapidly than dimensions
measured using KLD. Conventional KLD become prohibi-
tively expensive to compute even for moderately large
system sizes; as a result, measurements of DKLD can fail
to converge [17]. Fourier-based KLD (used in our analysis)
provides faster and converged estimates of DKLD in large
subsystem sizes [12]; it is, however, only suitable for
systems with rotational or translational invariance. CH
has no such limitations and can be performed on suffi-
ciently large systems with a boundary of any shape. It is far
easier to compute DCH than DKLD since the CH analysis is
carried out separately for each snapshot.

We demonstrate the convergence for both KLD and CH
analyses of our data by using different sampling methods.
In one approach, we change the sampling rate, thereby
changing both total observation time and the number of
images in the analysis. We find both DKLD and DCH con-
verge provided that sufficiently large data sets are used in
computations (Fig. 2). We also compute extensive scaling
of DCH by using samples randomly chosen from the data;
DCH exhibits exactly the same scaling with the subsystem
sizes in data sets of 25 000 images selected either randomly
or a fixed sampling period of 451th.

As the analyzed subsystem size approaches the physical
size of the experiment, both DCH and DKLD deviate from
scaling in the same way (Fig. 3). To compare this deviation
in both dimensions quantitatively, we use an intensive
quantity � ¼ @D=@A measured as a function of the radial

distance from the cell center. For each dimension, the
values of � are normalized to remove parametric depen-
dence on the choice of f; moreover, the radial distance r is
normalized by the aspect ratio �. In this representation
(Fig. 3), � ¼ 1 (for small r=�) indicates both DCH and
DKLD scale linearly with the area; however, � becomes
significantly less than one for both DCH and DKLD for r=�
sufficiently large. Remarkably, the deviation of � from
unity exhibits a similar functional dependence on r=� for
both DCH and DKLD even if different boundary conditions
are imposed.
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FIG. 2. Extensive scalings of DCH and DKLD for increasing subsystem sizes are obtained by computational homology (a) and a
modified KLD algorithm based on a Fourier method (b), respectively, for fraction f ¼ 0:7 in D-I. The number of images, at given
observation times, used at each data point in computations is labeled. The linear lines are drawn as a guide of the extensitivies to the
eye. Choosing f very close to 1 may include experimental errors, whereas choosing it too small may exclude necessary modes and
states necessary to describe the dynamics. But, for the range 0:5 � f � 0:9, extensive scalings of dimensions normalized by the
maximum dimension at each f nearly fall on a single curve.
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FIG. 3. The rates of increase � estimated from extensive scal-
ings of DCH (open symbols) and DKLD (closed symbols) are
shown as a function of r=� in units of cell depth d to indicate
the sidewall effects in the experiments, D-I (squares), D-II
(triangles), D-III (circles), D-IV (diamonds), at � ¼ 0:8. � is
only calculated from DKLD in D-II. While D-I, D-II, and D-III
are performed with a paper sidewall, D-IV is conducted with a
plastic boundary. The number of images used for computations
in D-I, D-II, D-III, and D-IV is given in Table I. Also, � as
dimension per area is obtained from the conventional KLD
algorithm (asterisks) by sampling the data of 10 000 images in
D-I with an annular window of inner r and outer rþ 2d radius
(r � 7d).

PRL 107, 034503 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JULY 2011

034503-3



Our results suggest the deviation from scaling for DCH

and DKLD measures the impact of lateral boundaries
(sidewalls) on the chaotic flow (Fig. 3). Sidewalls affect
convection patterns due to the mismatch in the thermal
conductivities of the sidewall and the fluid; sidewall effects
have previously been probed primarily at small � near
convection onset [14,18]. Here, we examine the effect of
sidewalls far from onset by comparing the behavior of �
for experiments with different sidewall conditions at
� ¼ 0:8. We see that � for both DCH and DKLD exhibits
the same deviation from scaling for experiments in differ-
ent sized convection cells, as long as the lateral boundary
conditions are similar (experiments D-I, D-II, and D-III in
Fig. 3). However, in experiments where the (plastic) lateral
boundaries increase sidewall forcing of the convective flow
(D-IV in Fig. 3) � for both DCH and DKLD deviates from
scaling at smaller r=� than for experiments with (paper)
lateral boundaries where sidewall forcing is weaker (D-III
in Fig. 3). More specifically, for both DCH and DKLD, �
decreases by about 30% (from unity) at r=� ¼ 0:86d in
D-I, D-II, and D-III and at r=� ¼ 0:74d in D-IV. Moreover,
our measurements are robust in the respect that nonline-
arities associated with shadowgraph imaging do not alter
our results; measurements ofDCH andDKLD, computed for
the full circular system and a circular region (r ¼ 15d)
from long time series of shadowgraph images, fluctuate
only 3% and 10%, respectively, as the effective optical
distance is varied over an order of magnitude in experi-
ments [19].

Relating experimentally accessible measures of the
number of DOF (e.g., DCH and DKLD) to more direct
measures (e.g., D�) remains an open question. Recent
direct simulations of RBC by Duggleby and Paul [12]
yielded the relationshipDKLD � 19:7D� from the variation
of both dimensions with a range of system sizes 6 �
� � 15 in a cylindrical convection cell. Our results suggest
that examining the effect of finite system size on D� may
provide a way to link D� quantitatively to DCH and DKLD.
In particular, it would be interesting to know whether �
behaves in a universal fashion; i.e., to explore whether �
associated with D� exhibits a similar functional depen-
dence as that shown by DCH and DKLD in Fig. 3. In this
regard, future studies that couple RBC laboratory experi-
ments with numerical simulations with realistic boundary
conditions at the same parameter values would be of great-
est value.
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