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We report the first experimental observation of quantum Talbot effects with single photons and

entangled photon pairs. Both the first- and second-order quantum Talbot self-images are observed

experimentally. They exhibit unique properties, which are different from those produced by coherent

and incoherent classical light sources. In particular, our experiments show that the revival distance of two-

photon Talbot imaging is twice the usual classical Talbot length and there is no net improvement in the

resolution, due to the near-field effect of Fresnel diffraction, which is different from the case of previous

proof-of-principle quantum lithography experiments in the far field.
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The Talbot effect is a near-field diffraction phenomenon
in which self-imaging of a grating or other periodic struc-
ture replicates at certain imaging planes without the need
for a lens [1]. The regular distance between the object and
the imaging plane is called the Talbot length [2], zT ¼
2d2=�, where d and � are the period of the structure and
the wavelength of the incident light, respectively. The
effect has found interesting applications in image process-
ing and synthesis, photolithography, optical testing, optical
metrology, and spectrometry [3]. Recently, the phenome-
non has also been demonstrated in areas such as atomic
waves [4–6], waveguide arrays [7], x-ray phase imaging
[8], and nonlinear systems [9].

Classical Talbot self-imaging is a kind of first-order
imaging, which is encountered when a periodic object is
illuminated with coherent light. Recently, second-order
Talbot self-imaging with pseudothermal light has been
observed experimentally [10,11]. The conditional Talbot
effect and the second-order quantum Talbot effect with
entangled photon pairs have been discussed theoretically
by various research groups [12–14]. However, such quan-
tum Talbot images have not been observed experimentally
so far, although many other types of quantum imaging have
been discussed and demonstrated [15–18]. Quantum imag-
ing is expected to have extensive applications in quantum
information and technology. For example, it has been
demonstrated that it may be useful in quantum lithography
[16,17], because of a possible breakthrough in lithographic
resolution by overcoming the diffraction limit.

Here we report the first experimental observation of
quantum Talbot imaging with entangled photon pairs. We
first consider the case of single photons. An outline of the
experimental setup is shown at the top of Fig. 1. The single
photons are provided by the signal photons of photon
pairs produced through spontaneous parametric down-
conversion in a 5� 5� 3 mm beta-barium-borate (BBO)
crystal cut for type-I phase matching. The crystal is

pumped by the second harmonic of a Ti:sapphire femto-
second laser (Mira-900 Coherent Inc.) with center wave-
length � ¼ 400 nm, beam diameter 3 mm, and repetition
rate 76 MHz. The signal photons pass through a single slit
to improve the spatial coherence and then are detected after
transmission through a one-dimensional rectangular am-
plitude diffraction grating. The other photon of the pair
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FIG. 1 (color online). Top: Experimental setup for first-order
single-photon Talbot self-imaging. (a) Theoretical plot of the
single-photon Talbot imaging carpet where x is the transverse
position across the beam and z2 the longitudinal position. The
color bar denotes the relative intensity. (b)–(d) present the
experimental results (open circles) of CCs for effective diffrac-
tion lengths: (b) Za ¼ zT (z2 ¼ 20 cm), (c) Za ¼ ð1=2ÞzT (z2 ¼
6:6 cm), and (d) Za ¼ ð1=4ÞzT (z2 ¼ 2:85 cm). The solid lines
are theoretical curves. The red filled circles in (a) indicate the
self-imaging positions corresponding to the experimental obser-
vations.
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(the idler photon) is employed as a trigger. Both the signal
and idler photons are spectrally filtered by an interference
filter of 10 nm bandwidth centered at 800 nm and then
detected by single-photon detectors (Perkin-Elmer SPCM-
AQR-14). A time window of 4 ns is chosen to capture the
coincidence counts.

For a periodic object of transmittance function Tðx0Þ
illuminated by a point source, the diffraction pattern in
the detection plane under the paraxial approximation is
given by

IðxÞ/
��������
Z
dx0Tðx0Þexp

�
i�

�Za

�
x0� x

1þz2=z1

�
2
���������

2

; (1)

where z1 and z2 are the distances from the object to the
source and the detector, respectively. Here Za ¼ z1z2

z1þz2
rep-

resents the effective diffraction length, which is defined
according to the Fresnel diffraction integral; x0 and x are
the transverse coordinates of the object and detection
planes, respectively. If the object is a one-dimensional
grating with slit width b and period d, then Tðx0Þ ¼P1

n¼�1 rect½ðx0 � ndÞ=b�. Here rectðuÞ is 1 for juj � 1=2
and 0 for other values. In the case when Za ¼ mzT (m is an
integer), Eq. (1) reduces to
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This represents classical first-order Talbot self-imaging
with a magnification of 1þ z2=z1. Figure 1(a) is a numeri-
cal simulation of a typical Talbot ‘‘carpet’’ pattern along
the longitudinal coordinate z2, obtained by using Eq. (1).
The grating parameters are b ¼ 90 �m and d ¼ 200 �m,
and the Talbot length is zT ¼ 10 cm for � ¼ 800 nm.

In our experimental setup, a single-slit aperture of width
a ¼ 120 �m is placed at a distance of z0 ¼ 25 cm from
the BBO crystal and z1 ¼ 20 cm from the grating object.
In fact, the Talbot effect for a point source is different from
the case of plane waves. Experimentally, the point source
can be avoided, for example, by using a lens between the
slit and the grating. Here we employ the point source
because it can be compared with the case in the ghost
imaging configuration below. The single-photon detector
is scanned across the signal beam and is triggered by the
idler detector so that only coincidence counts (CCs) are
recorded to avoid spurious counts and noise. When the
signal photon detector is placed at distances of Za ¼ zT ,
Za ¼ ð1=2ÞzT , and Za ¼ ð1=4ÞzT , the CCs produce the
self-imaging patterns shown in Figs. 1(b)–1(d), respec-
tively. At a distance of one Talbot length, Fig. 1(b) shows
the image of the grating with a magnification of 2. At one-
half the Talbot length, however, Fig. 1(c) shows the same
image but with a half-period shift and a magnification of
1.33. Moreover, at a quarter Talbot length the image period
is reduced to a half. By taking into account the magnifica-
tion of 1þ z2=z1 ¼ 1:14 in Fig. 1(d), the period of the
pattern is 0:5� 1:14� 200 ¼ 114 �m.

Considering a limited width a of the single slit in
the theoretical simulation, we derive the CCs in this
scheme to be

RD /
Z a=2
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where � is the diffraction angle satisfying sin� � � �
x0=z1 and xs is the transverse coordinate in the single-slit
plane. A single-slit diffraction factor (sinc function) is
merged into the expression. The theoretical curves fit
well with the experimental results.
The above discussion of the single-photon self-imaging

effect pertains to the classical first-order Talbot effect. In
the following, we study two kinds of the second-order
quantum Talbot effect. One of the experimental setups is
shown at the top of Fig. 2, which is a typical quantum ghost
imaging configuration [15]. The entangled photon pairs are
generated in the same way as that in Fig. 1. The signal
photons pass through a grating to detector 1, and the idler
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FIG. 2 (color online). Top: Experimental setup for two-photon
second-order Talbot self-imaging in the ghost interference
scheme. The open circles in (a)–(c) are the coincidence
counts for effective diffraction lengths of (a) Zb ¼ ð1=4ÞzT
(zi ¼ 12 cm, zs1 ¼ 8 cm, zs2 ¼ 20 cm), (b) Zb ¼ ð1=2ÞzT
(zi ¼ 25 cm, zs1 ¼ 15 cm, zs2 ¼ 40 cm), and (c) Zb ¼ zT
(zi ¼ 25 cm, zs1 ¼ 55 cm, zs2 ¼ 80 cm). The solid lines are
theoretical curves.
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photons travel freely to detector 2. Two interference filters
are placed in front of the detectors. When detector 1 is
fixed and detector 2 is scanned across the beam, coinci-
dence counting between them can show ghost imaging.

In this scheme the effective diffraction length for the
grating is given by Zb ¼ zs2ðzs1 þ ziÞ=ðzi þ zs1 þ zs2Þ
[13], where zs1 and zi are the distances from the BBO
crystal to the grating and detector 2, respectively, and
zs2 is the distance from the grating to detector 1. The
periodic structure can be enlarged by a magnification of
1þ ðzs1 þ ziÞ=zs2. If one imagines detector 2 to be a
source which emits a ray to the grating after reflection
off the crystal, the present scheme is comparable with the
previous one. In the experiment, the grating parameters are
b ¼ 180 �m and d ¼ 400 �m, defining the Talbot length
zT ¼ 40 cm for � ¼ 800 nm. When we take the effective
diffraction lengths to be Zb ¼ ð1=4ÞzT , Zb ¼ ð1=2ÞzT ,
and Zb ¼ zT , the experimental results are as shown
in Figs. 2(a)–2(c), respectively. It is readily seen that in
all three cases the magnification is two, while the
image period is 400 �m in Fig. 2(a) and 800 �m in
Figs. 2(b) and 2(c). In the theoretical simulation, a
Gaussian intensity profile with a full width of 1.8 mm for
the source is taken. The experimental data (open circles)
basically agree with the theoretical curves (solid lines),
thus verifying the theoretical analysis of the second-order
Talbot effect with entangled light.

We now explore the two-photon subwavelength Talbot
effect, in which a periodic object is illuminated by a
biphoton source. The experimental setup is sketched at
the top of Fig. 3. The 400 nm pulsed beam is used to
pump a 5� 5� 2 mm type-II cut BBO crystal to generate
collinear orthogonally polarized photon pairs. The grating
is placed immediately after the crystal. The slit, polarizing
beam splitter, and coincidence circuit work together as a
two-photon detector. For convenience, instead of moving
the two detectors, we rotate mirror M to ‘‘scan’’ the
diffraction pattern across the detector surfaces [16]. The
time window for the coincidence counts is 2 ns.

In this scheme we use a grating with b ¼ 120 �m and
d ¼ 300 �m, corresponding to a first-order Talbot length
of zT ¼ 22:5 cm for � ¼ 800 nm. Let Zc be the distance
between the grating and the slit (i.e., zc1 þ zc2 in Fig. 3.).
For the three cases of Zc ¼ ð1=2ÞzT , Zc ¼ zT , and Zc ¼
2zT , self-imaging patterns are observed as shown in the left
part of Figs. 3(a)–3(c), respectively. The experimental data
and theoretical curves are indicated by open circles and
solid lines, respectively. In the numerical simulation, we
assume a Gaussian intensity profile with a full width of
1.0 mm. For comparison, the right part shows the corre-
sponding images when the two-photon source is replaced
by a coherent beam of the same wavelength.

It has been known that two-photon interference can
exhibit subwavelength resolution such that the spacing
between the interference fringes is reduced to half of that

for one-photon interference [16,17]. However, the experi-
ment results in Fig. 3 showdifferent phenomena for the two-
photon Talbot effect. Comparing the interference patterns
observed for the two-photon and the coherent sources, we
find that when Zc ¼ ð1=2ÞzT , the fringe period for the
former is 150 �m, which is half of that for the coherent
source. However, for Zc ¼ zT and Zc ¼ 2zT , the image
periods for both sources are the same as in the original
grating. In particular, the two-photon self-images undergo
a half-period shift for Zc ¼ zT but not for Zc ¼ 2zT .
If we define the two-photon Talbot length as ZT ¼

2d2=ð�=2Þ ¼ 2zT , the experimental results can be properly
understood. The left images of Fig. 3(a)–3(c) correspond to
1=4, 1=2, and one two-photon Talbot length ZT , respec-
tively. Comparing these patterns with the classical Talbot
images at the corresponding Talbot lengths, we find that the
image resolution is not improved by a factor of 2, while the
Talbot length is doubled.
We verify the above understanding with a brief theoreti-

cal analysis. The two-photon amplitude for a two-photon
entangled state jc i is written as

h0jEðþÞ
1 ðx1ÞEðþÞ

2 ðx2Þjc i
/
Z

dx0T
2ðx0Þ exp

�
i�

�Zc

½ðx1 � x0Þ2 þ ðx2 � x0Þ2�
�
;

(4)
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FIG. 3 (color online). Top: Experimental setup for two-photon
second-order Talbot self-imaging in the quantum lithography
scheme. The open circles are experimental data observed for
effective diffraction lengths of (a) Zc ¼ ð1=2ÞzT ¼ 11:25 cm,
(b) Zc ¼ zT ¼ 22:5 cm, and (c) Zc ¼ 2zT ¼ 45 cm. Left
and right parts correspond to the entangled two-photon source
and the coherent light source, respectively. The solid lines are
theoretical curves.
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where EðþÞ
1 ðx1Þ and EðþÞ

2 ðx2Þ are the positive frequency
parts of the electric field in the detection plane. The two-
photon process features diffraction for T2ðx0Þ instead of
Tðx0Þ. Here our rectangular mask object satisfies T2ðx0Þ ¼
Tðx0Þ, so by setting x1 ¼ x2 ¼ x in Eq. (4), we obtain

h0jEðþÞ
1 ðxÞEðþÞ

2 ðxÞjc i/
Z
dx0Tðx0Þexp

�
i�

�ðZc=2Þðx�x0Þ2
�
:

(5)

If we regard the effective diffraction length as Zc=2, Eq. (5)
is equivalent to the classical case. Hence we define the
two-photon Talbot length to be ZT ¼ 2zT , which has in-
corporated the two-photon subwavelength feature.

In the far-field limit when the quadratic phase factor in
the integration can be neglected, the factor 2 can also be
included into the transverse position 2x. As a result, the
resolution of a two-photon diffraction pattern is doubled at
the same distance as a one-photon process. But this is not
the case for near-field diffraction.

With the same parameters for the grating and wave-
length as in the present scheme, we plot the near-field
Talbot carpets simulations in Figs. 4 (left) and (right) for
the two-photon and one-photon cases, respectively. We do
not see the transverse resolution improved for the two-
photon case. Instead, the carpet is stretched twice as far
along the longitudinal direction.

In summary, we have experimentally observed quantum
Talbot images with both single photons and entangled
photon pairs. The revival distance of two-photon Talbot
imaging is demonstrated to be twice the usual classical
Talbot length, and there is no net improvement in the
resolution, due to the near-field effect of Fresnel diffrac-
tion; this is in contrast to previous two-photon quantum
lithography experiments. We attribute this phenomenon to
multiphoton near-field diffraction, which should be con-
sidered in quantum lithography using self-imaging. It is to
be hoped that our results will be of value not only to

quantum metrology and scanning near-field optical mi-
croscopy but also to other quantum optical technologies.
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Lett. 82, 2868 (1999); M. D’Angelo, M.V. Chekhova, and
Y.-H. Shih, Phys. Rev. Lett. 87, 013602 (2001).

[17] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733
(2000).

[18] See also M. I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999);
A. Gatti, E. Brambilla, and L.A. Lugiato, Prog. Opt. 51,
251 (2008).

X(mm)

Z
c(m

)

−1 −0.5 0 0.5 1 
0

0.2

0.4

0.6

0.8

1

X(mm)

 

 

−1 −0.5 0 0.5 1 

0.2

0.4

0.6

0.8

1
(L) (R)

(a)

(b)

(c)

FIG. 4 (color online). Talbot self-imaging carpets plotted for a
grating illuminated by (left) a two-photon entangled source and
(right) a classical plane wave source. The red filled circles
indicate the three self-imaging positions of Fig. 3.
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