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We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral

chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly

analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic

field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the

chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral

chemical potential, which is consistent with an analytical prediction.
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Quantum chromodynamics (QCD) is expected to have
many characteristic phases at a finite baryon density.
However, it is difficult to extract exact information about
high-density QCD. One major reason is that lattice QCD
simulation suffers from the sign problem. At finite baryon
chemical potential, the fermion determinant becomes com-
plex, and its phase fluctuation makes it severe to evaluate
the ensemble average by Monte Carlo simulation. It is
instructive to study exceptional cases which can avoid
the sign problem in lattice QCD. Through these studies,
we can learn the qualitative behavior of high-density QCD.
The well-studied examples are isospin chemical potential
and two-color QCD. We here consider another exceptional
case, that is, chiral chemical potential [1].

The chiral chemical potential �5 is defined in the fer-
mion part of the Euclidean action as

SF ¼
Z

d4x �c ð��D� þmþ�5�4�5Þc : (1)

This action preserves positive semidefinite property of
the fermion determinant and thus has no sign problem.
Physically, the chiral chemical potential generates an im-
balance between the right-handed and left-handed fermi-
ons. From the index theorem, this imbalance is equivalent
to the topological charge of the background gauge field.
The chiral chemical potential is related to the space-time
dependent effective theta angle, which represents local
variation of the topological charge [1]. The constant chiral
chemical potential is regarded as a static alternative to the
topology changing effect. Since lattice QCD can simulate
only an imaginary-time equilibrium system not a real-time
evolution, the chiral chemical potential is a reasonable
choice to study this effect in lattice QCD.

One of the most important applications of the chiral
chemical potential is the chiral magnetic effect. The chiral
magnetic effect is an electromagnetic charged current per-
pendicular to the reaction plane of a heavy-ion collision
[2]. A noncentral collision of two heavy ions produces a
strong magnetic field, and then this magnetic field fixes the
spin and momentum directions of the quarks according to

their chiralities. As a consequence, a finite net current is
induced along the magnetic field if there is a chiral imbal-
ance associated with the axial anomaly or, equivalently, a
nontrivial topology of the background gluon configuration.
The research for the chiral magnetic effect is important
because it enables us to detect topological structure and
local P and CP violation in the strong interaction by
experiments [3]. The chiral chemical potential has been
introduced in several phenomenological works for the
chiral magnetic effect [1,4–6]. The chiral magnetic effect
has also been studied in lattice gauge theory without the
chiral chemical potential [7–9].
In this work, we performed a first lattice QCD simula-

tion with the chiral chemical potential. For the lattice
gauge action, we used the plaquette gauge action with
Nc ¼ 3. For the lattice fermion action, we used the
Wilson-Dirac operator as

Dð�5Þx;y ¼ �x;y � �
X
i

½ð1� �iÞUiðxÞ�xþî;y

þ ð1þ �iÞUy
i ðx� îÞ�x�î;y�

� �½ð1� �4e
a�5�5ÞU4ðxÞ�xþ4̂;y

þ ð1þ �4e
�a�5�5ÞUy

4 ðx� 4̂Þ�x�4̂;y�: (2)

The chiral chemical potential is introduced as the
exponential matrix factor e�a�5�5 ¼ coshða�5Þ �
�5 sinhða�5Þ, which is analogous to baryon chemical po-
tential on the lattice [10]. The lattice action reproduces
the original action (1) in the continuum limit a ! 0. This
Dirac operator satisfies the relation �5Dð�5Þ�5 ¼ Dyð�5Þ
even at a � 0, and thus the fermion determinant detDð�5Þ
is always positive real. We generated the gauge configura-
tions with the Nf ¼ 2 dynamical Wilson fermion by the

hybrid Monte Carlo algorithm. The inversion of the Dirac
operator was calculated by the BICGSTAB solver with the
even-odd preconditioning. In most of the following analy-
ses, the lattice gauge coupling is fixed at � ¼ 2Nc=g

2 ¼
5:32144, and the hopping parameter is fixed at � ¼ 0:1665
both for the valence and dynamical fermions. These values
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correspond to the lattice spacing a ’ 0:13 fm (a�1 ’
1:5 GeV) and the pion mass am� ’ 0:26 (m� ’
0:4 GeV) at �5 ¼ T ¼ 0 [11].

First, we calculated the chiral charge density

n5 � �a3h �c�4�5c i ¼ a3hc y
Rc R � c y

Lc Li; (3)

i.e., the difference between the particle number densities of
the right-handed and left-handed fermions. The numerical
results are shown in Fig. 1. The chiral charge density is
exactly zero at �5 ¼ 0, where the right-handed and left-
handed fermions are symmetric. The chiral charge density
becomes nonzero in �5 > 0 and increases as �5 increases.
Note, however, that the chiral charge density saturates
around a�5 ¼ 1:4. This is due to the saturation of the
lattice sites, which is observed also in the cases of isospin
chemical potential and two-color QCD [12]. Because the
saturation is a lattice artifact, we cannot trust the data in
a�5 > 1:0.

Figure 1 includes the data with different values of
temperature T ¼ 1=ðaNtÞ. The low-temperature ones
(Nt ¼ 8 and 12) are in the confinement phase, and their
behaviors are almost the same in the present calculation.
The high-temperature one (Nt ¼ 4) is in the deconfinement
phase. The chiral charge density is qualitatively different
between the confinement and deconfinement phases. In
a�5 � 0:2, the chiral charge density in the deconfinement
phase is larger than that in the confinement phase, which is
consistent with phenomenological models [5,13,14]. In
a�5 > 0:2, the chiral charge density in the confinement
phase grows rapidly, and becomes larger than that in the
deconfinement phase. This rapid growth is considered to be
caused by some bound-state contribution.

Next, we focus on the phase structure of a QCDmatter in
�5 > 0. In two-flavor QCD at �5 ¼ 0, the confinement-
deconfinement phase transition is a crossover in the non-
chiral limit (and a second-order phase transition in the
chiral limit). There is a possibility that the order of the
transition is changed by introducing the chiral chemical

potential. For example, phenomenological models predict
a first-order phase transition line in the �5-T plane
[5,13,14].
We calculated the temperature dependence of the

Polyakov loop, which is a good indicator of confinement-
deconfinement, by varying the lattice gauge coupling �.
The numerical result at a�5 ¼ 1:0 is shown in Fig. 2. The
Polyakov loop increases around � ’ 5:27, which means a
deconfinement transition driven by thermal effects.
However, the Polyakov loop and its susceptibility are al-
most independent of the spatial volume V ¼ a3N3

s . This
scaling behavior indicates that this transition is not a true
phase transition but a smooth crossover. We cannot obtain
a signal of a true phase transition in a�5 � 1:0. Therefore,
we conclude that, even if it exists, there is no change of the
order of the phase transition in the present accessible range
of �5. This difficulty has been already experienced in
lattice QCD with a finite isospin chemical potential �I

[12]. Although the critical end point is located away from
�I ¼ 0 when the quark mass is not quite small. Since the
location of the critical end point depends on the quark
mass, the situation will change in the near-chiral limit.
As shown above, we obtained a QCD matter with an

imbalance between the right-handed and left-handed fer-
mion number densities. To analyze the chiral magnetic
effect, we applied an external magnetic field to this system.
On the lattice, the Uð1Þ electromagnetic gauge field is
introduced as the Abelian phase factor u�ðxÞ on the

SUðNcÞ link variable U�ðxÞ in the Dirac operator (2). For

generating a constant magnetic field B in the x3 direction,
the phase factor is taken to be u2ðxÞ ¼ expðiaqBx1Þ,
u1ðx1 ¼ aNsÞ ¼ expð�iaqBNsx2Þ, and u�ðxÞ ¼ 1 for

other components [7]. Only discrete values of the magnetic
field are allowed as a2qB ¼ ð2�=N2

s Þ � ðintegerÞ because
of the quantization of the magnetic flux. Since the mag-
netic field is not dynamical but external, there is no
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FIG. 1 (color online). The chiral charge density n5. The lattice
sizes are N3

s � Nt ¼ 123 � 4, 123 � 8, and 124.
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FIG. 2 (color online). The expectation value of the Polyakov
loop P at a�5 ¼ 1:0. The lattice sizes are N3

s � Nt ¼ 83 � 4,
123 � 4, and 163 � 4.
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backreaction from the quarks to the electromagnetic gauge
field. For simplicity, we consider two fermion flavors with
the same charge q. This approximation does not change the
qualitative behavior since the charge difference between
the quarks is not essential for the underlying mechanism of
the chiral magnetic effect.

In this setup, we measured the vector current density

j� � a3h �c��c i: (4)

The simulations were done in the deconfinement phase
(Nt ¼ 4), which is relevant for the chiral magnetic effect
in heavy-ion collisions. The transverse component j1 and
the longitudinal component j3 of the current density are
depicted as a function of �5 in Fig. 3, and as a function of
qB in Fig. 4. The two transverse components of the current
density are the same, j1 ¼ j2, from the rotational symme-
try, and they are zero in all of the simulations. All compo-
nents of the current density are zero either at B ¼ 0 or at
�5 ¼ 0. Only when both B and �5 are nonzero, a finite
current density is generated in the longitudinal direction.
These results suggest that an external magnetic field in-
duces a finite current density along the magnetic field only
in a chirally imbalanced QCD matter. This is exactly what
is expected of the chiral magnetic effect.

As seen in Figs. 3 and 4, the induced current density is an
increasing function of �5 and qB. Furthermore, it is given
as a linearly rising function both of �5 and of qB. We can
parametrize its functional form as

j3 ¼ a3CNdof�5qB: (5)

The factor Ndof is the number of particles with the same
charge, which is 6 ( ¼ Nc � Nf) in this simulation. The

overall constant is numerically determined as C ¼
0:013� 0:001 by fitting the data. This functional form
has been predicted by an analytical approach using the

Dirac equation coupled with the background magnetic
field [1]. The lattice result establishes this prediction, ex-
cept for the overall constant C, which is 1=ð2�2Þ ’ 0:05 in
the analytical approach. This deviation comes from some
QCD corrections. One possible candidate is a correction by
the renormalization. The local vector current (4) is not
renormalization-group invariant on the lattice [15]. This
is very different from the vector current in the continuum.
Another candidate is the dielectric correction, which re-
duces the induced current [6].
The above situation is completely different from the

standard lattice QCD without the chiral chemical potential.
In the standard lattice QCD, we cannot observe the global
induced current. Because the current itself is zero and only
its local fluctuation is nonzero, the chiral magnetic effect is
studied only through the local fluctuation [7]. In principle,
lattice QCD can reproduce the gauge configuration with a
nontrivial topology, which gives a finite chiral imbalance
via the index theorem. However, the global topological
charge (or the global chiral charge) per volume is negli-
gibly small, unless one artificially makes the gauge con-
figuration with a huge number of topological charge. The
magnetic field cannot induce the global current in observ-
able amount. On the other hand, at a finite chiral chemical
potential, the chiral charge density is finite and indepen-
dent of the volume. Therefore, owing to the introduction of
the chiral chemical potential, we can observe the global
current induced by the chiral magnetic effect.
Finally, in Fig. 5, we plot the induced current density as a

function of the chiral charge density n5 with a fixed mag-
netic field. We can see that the induced current density is
approximately proportional to n5. In this simulation, the
magnetic field is very large, qB � �2

5. Under the strong

magnetic field, the quantum state of a charged particle is
dominated by the lowest Landau level. While the induced
current density cannot generally be written in a simple
analytical function of n5, the contribution of the lowest
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FIG. 3 (color online). The transverse current density j1 and the
longitudinal current density j3 as a function of the chiral chemi-
cal potential �5. The black dashed line is a linear function (5).
The lattice size is N3

s � Nt ¼ 123 � 4.
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FIG. 4 (color online). The transverse current density j1 and the
longitudinal current density j3 as a function of the magnetic
field B.
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Landau level can be written as a linear function in the
chiral limit [1]. Although the lattice QCD simulation is not
in the chiral limit, we can expect that the obtained induced
current is dominated by the lowest Landau level.

In this study, we have performed the lattice QCD simu-
lation with the chiral chemical potential, and verified that it
actually works well. We have succeeded in obtaining non-
zero current induced by an external magnetic field, which
is directly related to the chiral magnetic effect. This is a
great advantage because, otherwise, the chiral magnetic
effect is indirectly analyzed through the local fluctuation of
the current and the local fluctuation is easily affected by
various contaminations. Although we have not addressed
the dependence on the quark mass and the effect of renor-
malization, these issues can be studied systematically by
the standard lattice QCD techniques. It is also straightfor-
ward to improve details of the numerical simulation, such
as lattice action, lattice spacing, lattice volume, etc.
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FIG. 5 (color online). The longitudinal current density j3 as a
function of the chiral charge density n5.
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