
Compact Stars in Eddington Inspired Gravity

Paolo Pani,1 Vitor Cardoso,1,2 and Térence Delsate1
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A new, Eddington inspired theory of gravity was recently proposed by Bañados and Ferreira. It is

equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter

theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new

features that we report here. First, for a positive coupling parameter, the field equations have a dramatic

impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports

stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-

gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong,

near optimal constraint on the coupling parameter, which can even be improved by observations of the

moment of inertia of the double pulsar.

DOI: 10.1103/PhysRevLett.107.031101 PACS numbers: 04.50.�h, 98.80.�k

I. Introduction.—Einstein’s general relativity (GR) is
able to explain a wide variety of phenomena at solar system
scales and beyond, and after decades of intense scrutiny
stands as the most attractive theory of gravity. However,
high-curvature corrections may be necessary to address
unresolved issues, such as the presence of singularities in
cosmology and in the interior of black holes.

Recently, an intriguing alternative to GR (based on an
original proposal by Eddington) was put forward by
Bañados and Ferreira (BF) [1] (see also [2]). BF theory
is described by the action

S ¼ 2

�

Z
d4xð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jgab þ �Rabð�Þj

q
� �

ffiffiffiffiffiffiffi�g
p Þ; (1)

where Rabð�Þ denotes the symmetric part of the Ricci
tensor, built from the connection �c

ab and � is related to

the cosmological constant, � ¼ ð�� 1Þ=�. We will focus
on asymptotically flat solutions and set � ¼ 1. The metric
g and the connection � are independent fields and, at the
classical level, matter is minimally coupled to the metric
only. The BF proposal explores the fact that the coupling
between matter and gravity is one of the least tested sectors
of gravitation; in fact the theory can be shown to be
completely equivalent to GR in vacuum [1]. However, it
dramatically differs from GR in the presence of matter; for
example, it yields a singularity-free cosmology, thus pre-
senting itself as a potentially exciting gravity theory. The
BF theory modifies the Newtonian regime (again, in the
matter coupling), but tests of gravity within matter are
extremely hard to carry out, partly because we understand
the coupling to matter so poorly. Thus, constraints on the
BF theory as a result of Earth-based experiments are hard
to accomplish.

Here we show that nonlinear effects and deviations from
Einstein’s theory are more pronounced inside high-density

objects. When �Rab � 1, the first corrections to the
Einstein equations read

Rabð�Þ ¼ Tab � 1

2
Tgab þ �

�
Sab � 1

4
Sgab

�
þOð�2Þ;

where two types of Oð�Þ corrections appear: those hidden
in Rabð�Þ, which implicitly depend on derivatives of matter
fields, and those depending on Sab ¼ Tc

aTcb � 1
2TTab,

which are quadratic in the matter fields. Hence we expect
strong corrections at high densities or where strong matter
gradients exist, for example, in early cosmology [1] or
inside neutron stars (NSs). Higher order corrections in
the matter fields were also discussed in Ref. [3] to cure
cosmological singularities. The purpose of this Letter is to
show that the best possible constraints on the theory arise
from the study of NSs and other compact objects. In the
process, we report new remarkable features of BF theory.
IIA. Stars in the nonrelativistic limit.—Let us start by

discussing the nonrelativistic limit of (1). The modified
Poisson equation reads [1]

r2� ¼ 4�G�þ �r2�=4: (2)

From Eq. (2), and requiring spherical symmetry, the hydro-
static equilibrium equation follows

dP=dr ¼ �GmðrÞ�=r2 � ���0=4: (3)

While BF corrections are absent for constant density pro-
files, interesting effects may show up for nontrivial matter
distributions. Newtonian stellar models are solutions of
Eq. (3) supplemented by the standard mass conservation,
dm=dr ¼ 4�r2�ðrÞ and an equation of state (EOS). We
note that constant density stars in BF theory are potentially
pathological, since they introduce a Dirac delta contribu-
tion in Eq. (3). For this reason, in this Letter we shall focus
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on more realistic, polytropic models of the form Pð�Þ ¼
K�ðnþ1Þ=n, where K and n are constants.

IIA1. Newtonian pressureless stars.—Remarkably, this
theory supports pressureless stars, i.e., stars made of non-
interacting particles, which provide interesting models for
self-gravitating dark matter. Indeed, if P � 0 and � > 0,
Eq. (3) is solved by

�ðrÞ ¼ �c sinð$rÞ=ð$rÞ; $ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G�=�

p
: (4)

The radius and mass of the star read R ¼ �=$ and M ¼
4�2�c=$

3, respectively. In the interior, the Newtonian
potential is constant and it matches continuously the vac-
uum potential GM=r at the radius. Below, we prove that
these solutions are also linearly stable.

IIA2. Newtonian polytropic models.—For a generic pol-
ytropic index n, the field equation must be solved numeri-
cally, imposing �� �c þ �2r

2 at the center. It is easy to
show that realistic stellar configurations (with � ! 0 at the
surface of the star) can only exist provided the following
condition is satisfied

� >�j�cj ¼ �4Kð1þ 1=nÞ��1þ1=n
c : (5)

Similar constraints exist for any EOS for which the
pressure increases monotonically with the density. For
� > 0, condition (5) is always fulfilled. In some cases
the Lane-Emden equation obtained from Eq. (3) can
be solved analytically [4]. For instance if n ¼ 1,
Pð�Þ ¼ K�2, and the solution reads as in (4), but with

$ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�=ð8K þ �Þp

, so that it exists for � >�8K and
reduces to the pressureless case for K ¼ 0.

IIB. Stability in the nonrelativistic limit.—We now dis-
cuss stability of the Newtonian configurations against ra-
dial perturbations. The standard treatment can be extended
straightforwardly to encompass BF theory [5]. Assuming a
time dependence �ei!t for the fields, the modified eigen-
value equation reads

4�P0

r
þ ��

4

�
2

r
��0 � �0�0 �

�
�

r2
ðr2�Þ0

�0�

�
�
�P

r2
ðr2�Þ0

�0 ¼ ��!2;

where � is the adiabatic index of the perturbations. This
equation must be solved for the Lagrangian displacement �
requiring regularity at the center and at the radius. An
instability corresponds to an eigenmode with !2 < 0.

IIB1. Pressureless stars.—For P � 0 and � given in (4),
our numerical study found eigenmodes with!2 > 0 and no
unstable mode. Therefore, pressureless stars in the modi-
fied Newtonian theory are stable. As we shall see, these
solutions persist in the fully relativistic theory.

IIB2. Newtonian polytropic stars.—In Newtonian grav-
ity, polytropic models with � ¼ 4=3 are marginally stable
for any polytropic index n [5]. In our case, these models
are stable if � > 0 and unstable if � < 0. For generic values

of �, positive values of � contribute to stabilize the models,
while negative values work in the opposite direction.
IIC. Gravitational collapse.—The collapse of incoherent

dust in the Newtonian limit shares many properties with its
relativistic analogue [6,7]. The relevant Eulerian equations
governing the fluid dynamics are Eqs. (9) and (11) in
Ref. [7] together with

@tuðxÞ þ uðxÞ@ruðxÞ ¼ �GMðxÞ=r2 � �@r�ðxÞ=4;
where uðxÞ is the fluid velocity and x ¼ ðt; rÞ. In standard
Newtonian gravity, � ¼ 0, the equations can be solved
analytically when �ðxÞ ¼ �ðtÞ and they correspond to the
relativistic Oppenheimer-Snyder solution [7]. The dust

collapses in a finite time tC ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3=ð8MTÞ

p
, where R

and MT are the initial radius and the total mass of the
spherical dust configuration. The density � and the fluid
velocity u diverge at any radius when t ! tC. Hence, we
can simply solve for an expansion close to the center

�ðxÞ ¼ �0ðtÞ þ �1ðtÞrþ �2ðtÞr2 þOðr3Þ; (6)

uðxÞ ¼ u0ðtÞ þ u1ðtÞrþ u2ðtÞr2 þOðr3Þ; (7)

and the collapse occurs if these fields diverge at some t.
The field equations impose �1ðtÞ ¼ u0ðtÞ ¼ u2ðtÞ ¼ 0 and

�2ðtÞ ¼ ��5=3
0 ðtÞ, where �< 0 is a constant, and

tð�0Þ � tð�iÞ ¼
Z �0

�i

dxx�4=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
24�G

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=3 � �1=3

i þ ��

8�G
ðx� �iÞ

r
;

which, for � ¼ 0, reduces to that in Ref. [7]. This equation
can be integrated analytically for any �. A collapse occurs
when tð�0 ! 1Þ � tð�iÞ; i.e., the time corresponding to an
infinite density is in the future. We find that this condition
is fulfilled only when � � 0 but, when � > 0, the collapse
does not occur. Figure 1 shows that in this case the matter
fields have an oscillatory behavior, whose period and am-
plitude depend on ��. The same feature is found in early
cosmology [1]. This suggests that singularities may be
avoided in BF theory with � > 0, due to ‘‘repulsive grav-
ity’’ effects proportional to ��0.
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FIG. 1 (color online). Oscillatory behavior of collapse-related
quantities as functions of time for �j�j ¼ 6:5.
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IIIA. Relativistic compact stars.—Let us now consider
static and spherically symmetric perfect-fluid stars in the
fully relativistic theory, described by

qabdx
adxb ¼ �pðrÞdt2 þ hðrÞdr2 þ r2d�2;

gabdx
adxb ¼ �FðrÞdt2 þ BðrÞdr2 þ AðrÞr2d�2:

Here qab is an auxiliary metric [1], and we have used the
gauge freedom to fix the function in front of the spherical
part of the metric q. We consider perfect-fluid stars with
energy density �ðrÞ and pressure PðrÞ such that

Tab � Tab
perfect fluid ¼ ½�þ P�uaub þ gabP; (8)

where the fluid four-velocity ua ¼ ð1= ffiffiffiffi
F

p
; 0; 0; 0Þ.

We integrate the field equations (5) and (6) in Ref. [1]
imposing regularity conditions at the center of the star. The
series expansion of the field equations at the center of the

star contains terms of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �PcÞð1þ ��cÞ

p
.

Assuming �c, Pc > 0, � must satisfy two conditions in
order to allow for self-gravitating objects:

Pc� < 1; for � > 0; (9)

�cj�j< 1; for � < 0: (10)

Hence, the existence of NSs with �c � 8� 1017 kgm�3

and Pc � 1034 N m�2 strongly constrains the theory,
j�j & 1 m5 kg�1 s�2. Furthermore, it is easy to prove that
compact objects only exist if P00ð0Þ< 0. This gives a
further constraint depending on �c, Pc and �0

c, whose
form is cumbersome, but it is similar to Eq. (5). In par-
ticular, the condition is always satisfied for � > 0.

The field equations are integrated outward up to the
radius R, defined by the condition PðRÞ ¼ 0, where we
require the numerical solution to match the exact, and
unique, vacuum Schwarzschild solution, FðrÞ ¼ BðrÞ�1 ¼
pðrÞ ¼ hðrÞ�1 ¼ 1� 2M=r, where M is the mass of the
star. To match our numerically generated spacetime to a
Schwarzschild exterior we use the Darmois-Israel equa-
tions [8] at the radius, i.e., ½gij� ¼ 0 and ½KijðqÞ� ¼ 0,

where ½	 	 	� is the jump across the surface, KijðqÞ is the

extrinsic curvature tensor built with the metric q, and
i, j ¼ 0, 2, 3. These matching conditions come from the
field equations and the requirement of a well-defined
3-geometry and give a unique prescription to compute
the mass of the spacetime.

IIIA1. Relativistic pressureless stars.—The existence of
Newtonian pressureless stars makes it relevant to investi-
gate the existence of similar solutions in the full theory. To
this purpose, we set P � 0. The conservation of the stress-
energy tensor simply implies FðrÞ ¼ const. The solutions
of the field equations then depend only on one parameter,
the dimensionless central density ��c.

As shown in Fig. 2, for any value of � > 0, there exists a
regular solution which reduces to the Newtonian solution
discussed above in the nonrelativistic limit ��c � 1.

These solutions have a positive binding energy and can
be as compact as GM=R� 0:3 for ��c � 200. Of course
they do not exist in GR, while they exist in BF theory
because � > 0 introduces a repulsive gravity contribution.
Interestingly, the EOS for dark matter particles is approxi-
mately P � 0. Hence, in this theory self-gravitating
objects, purely made by dark matter, can exist and may
reach the typical compactness of most compact NSs.
Furthermore, these objects are stable in the Newtonian
limit and it is reasonable to assume that they would remain
stable also in the relativistic theory.
IIIA2. Polytropic EOS.—We consider the model

� ¼ nmb þ K
n0mb

�� 1

�
n

n0

�
�
; P ¼ Kn0mb

�
n

n0

�
�
;

with the same polytropic parameters as in Ref. [9]. Some
results are shown in Fig. 3 for different values of �. The
stellar mass M is shown as a function of the central
baryonic density �b ¼ mbnð0Þ. In GR, maxima of this
curve correspond to marginally stable equilibrium configu-
rations, all solutions after the first maximum are unstable to
radial perturbations (see, e.g., [5]). This picture may
change when � � 0. However, when ��c � 1 our solu-
tions reduce to the nonrelativistic ones, for which we
proved stability, at least when � > 0. Hence, we conjecture
that properties similar to GR still hold and branches before
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FIG. 2 (color online). Compactness for pressureless stars in
the relativistic theory and in the Newtonian limit, as functions
of ��c.
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FIG. 3 (color online). Polytropic models for different values
of �. Left panel: mass as a function of the central baryonic
density �b. Right panel: mass-radius relation. Inset: binding
energy as a function of �b. Results are normalized by �0 ¼
8� 1017 kgm�3, which is a typical central density for NSs.
Curves terminate when conditions (9) or (10) are not fulfilled.
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the first maximum in Fig. 3 are likely stable. We leave a
detailed analysis for the future.

In the inset of Fig. 3 we also show the normalized
binding energy reads Eb=M ¼ �m=M� 1, where �m ¼
mb

R
d3x

ffiffiffiffiffiffiffi�g
p

u0nðrÞ, is the baryonic mass of the configu-

ration and corresponds to the energy that the system would
have if all baryons were dispersed to infinity. For bound
(not necessarily stable) configurations, Eb > 0.

Positive values of � tend to enhance the relativistic
effects: the maximum mass is larger than in GR and it
occurs for smaller central density. Moreover, the binding
energy for these models increases with �. Negative values
of � have the opposite behavior. Remarkably, the most
interesting effects show up when � > 0, i.e., in the same
region where singularities seem to be prevented.

These effects could be observable. Present NS observa-
tions constrain the mass-radius relation (e.g., [10]), and
electromagnetic observations of binaries containing x-ray
pulsars may in principle constrain the binding energy as
well [11]. The recent discovery of a high-mass NS [12] also
rules out many equations of state in GR. However, these
observations could be interpreted in terms of modified
gravity at large curvature, rather then invoking an exotic
EOS in GR.

IIIB. Slowly rotating models.—Slowly rotating stars
can be constructed from the corresponding static solutions
[13]. At first order in the rotation, gt’ ¼ ��ðrÞr2sin2	,
qt’ ¼ ��ðrÞr2sin2	 and the stress-energy tensor for a

rotating fluid can be built from Eq. (8) with

ua ¼ fut; 0; 0;�utg;
ut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðgtt þ 2�t’ þ�2g’’Þ

q
;

where � is the angular velocity of the fluid. The field
equations for � and � have to be solved by imposing
regularity at the center and matching the vacuum solution,
� ¼ � ¼ 2J=r3 at the stellar radius, where J is the angular

momentum. In Fig. 4 we show the moment of inertia
I ¼ J=� as a function of the stellar mass.
IV. Conclusions.—Eddington inspired theories are viable,

one-parameter, alternatives to Einstein’s gravity. We have
shown that in these theories the structure of compact stars
is dramatically different from GR, with potentially observ-
able effects. For � > 0, our results show that BF theory has
several remarkable features; e.g., singularities in gravitational
collapse may be prevented. The mere existence of compact
NSs strongly constrains the theory, �Pc < 1. Furthermore, in
our simple polytropic model, observational determination of
the moment of inertia to an accuracy of 10%, as it is expected
from future observations of the double pulsar [14], will place
an even stronger constraint, j��0j & 0:1 (cf. Fig. 4). We
expect that a realistic EOS would constrain ��0 by the
same order of magnitude. Remarkably, NSs are the densest
matter configurations in the universe, so that these are likely
the strongest bounds on the theory. Furthermore, it happens
that the typical density of a NS, �0 � 8� 1017 kgm�3,
corresponds to the density of the early Universe (age
�10�6 s); thus, the present analysis can put strong con-
straints on the cosmological effects found in Ref. [1].
Several interesting issues, e.g., the collapse in the relativistic
theory and black hole formation, the role of realistic EOS, the
stability analysis of relativistic stars and possible ergoregion
instability of rotating models, are left for future work.
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FIG. 4 (color online). Moment of inertia for polytropic models
as a function of the stellar mass for different values of �.
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