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The scattered wave formalism is developed for a quantum subsystem interacting with the external
environment through open boundaries. The total wave function is divided into incident and scattered
components and Markovian outgoing wave boundary conditions are applied to the scattered wave
function. This formalism significantly reduces the computational effort relative to other methods which
rely on Green functions and memory kernels. The method is applied to one-dimensional barrier scattering
and to a three-dimensional model for the field effect transistor.

DOI: 10.1103/PhysRevLett.107.030401

Studies of open quantum systems require boundary con-
ditions that allow for the exchange of matter and energy
with the environment. Various open-system boundary
conditions for the time-dependent Schrodinger equation
(TDSE) have been designed to mimic a finite spatial do-
main coupled to external regions [1-6]. For example, a
multistage wave packet propagation algorithm was re-
cently applied to electrical conduction in a donor-bridge-
acceptor system [7]. In addition, non-Markovian boundary
conditions which employ Green functions and memory
kernels have been used for model problems [4]. The com-
plexity of some of these methods results in their being too
time consuming for use in multidimensional applications.

In this study, a straightforward method requiring mini-
mal computational effort is presented for introducing open
boundary conditions into the solution of the TDSE for a
quantum subsystem. In the scattered wave formalism, the
total wave function is split into incident and scattered parts
and outgoing wave boundary conditions are applied to the
scattered wave function. The incident wave can be analyti-
cally propagated in the conduction channel or it can be
injected through one of the surfaces where outgoing
boundary conditions are applied to the scattered wave.
The boundary conditions are not treated using effective
Hamiltonians, negative imaginary absorbing potentials,
Green functions, or memory kernels. The Markovian
boundary conditions used here only require the form of
the scattered wave function near the boundaries at the
current time. It will be demonstrated in this study that
the scattered wave method can be orders of magnitude
faster than methods employing memory kernels.

The type of application well suited for the scattered
wave formalism is the modeling of nanoscale electronic
devices, including waveguides and channels [8,9], molecu-
lar wires [10,11], resonant tunneling diodes [12,13], and
field effect transistors [14—17]. Quantum effects become
significant in these devices and ballistic transport is fre-
quently assumed because of the very short transit times in
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the conduction channel. In order to model the operation of
these devices, the TDSE must be solved in the conduction
channel with open boundary conditions at the interfaces to
the external leads.

In a one-dimensional case, the time evolution of the
wave function is described by the TDSE
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In the scattered wave formalism, we separate the total
wave function into incident and scattered parts, W(x, t) =
D(x, 1) + Y(x, t). The initial condition for the wave func-
tion is given by W(x,0) = ®(x,0). The incident wave
function satisfies the free-space TDSE, and is launched
from the left side of the conduction channel. Substituting
the free-space TDSE into the TDSE for the total wave
function in Eq. (1), we obtain the modified TDSE for the
scattered wave function
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where the initial condition is given by Y (x, 0) = 0. The last
term serves as an inhomogeneous source for the scattered
wave function. The scattered wave function describes the
outgoing waves created in the interaction region of the
potential. In general, it is straightforward to analytically
or numerically determine the incident wave function by
solving the free-space TDSE. After obtaining the source
term in Eq. (2), we solve the modified TDSE for the
scattered wave function.

One important feature of the scattered wave formalism is
that open boundary conditions can be applied to the scat-
tered wave function to significantly reduce the size of the
computational domain. The ratio method will be introduced
for imposing open boundary conditions at the edges of the
system. We assume that the computational domain [«, 3]
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for the scattered wave function is discretized by N + 1 grid
points x; with x; = a and x) = . Outgoing wave bound-
ary conditions are applied to the scattered wave function at
the left and right boundaries. At the left boundary, the
scattered wave function has the form of an outgoing wave,
Y(x) = Yyexp(—ikx), provided that we have a constant
potential outside the computational domain. Here, the co-
efficient Yy and the wave vector kK may be complex valued.
From this condition, we can derive an equation associated
with the scattered wave at the left three internal grid points,
Y(x9) = Y(x;)>/Y(x,). Thus, the scattered wave function
at the left boundary can be determined from the scattered
wave function at the interior points x; and x,. We can derive
a similar condition for the scattered wave at the right
boundary. The outgoing wave boundary condition for the
total wave function was previously applied to deep tunnel-
ing during proton emission [18]. A significant advantage of
the scattered wave formalism is that different boundary
conditions can be used for @ and Y at the same point. For
example, at the left boundary, outgoing conditions can be
imposed upon Y while @ is entering the internal region.

In order to demonstrate features of the scattered wave
formalism, computational results will be presented for
three model problems. The first of these concerns a
Gaussian wave packet scattering from the Eckart barrier
V(x) = Vysech®(yx), where V,=1.0, y =20 (see
Fig. 1). All quantities are given in atomic units in this
example (m =1 and 7 =1). The initial Gaussian
wave packet is given by ®(x) = g(x, 0) = (28/m)"/* X
exp[—B(x — x)* + ipo(x — xy)/h], where B = 0.6,
po = L.5, and xo = —5.0. The incident wave function
satisfying the initial condition and the free-space TDSE
is known analytically [19]. The analytical expression for
the time evolving Gaussian was used in the source term for
the integration of the modified TDSE in Eq. (2).

The modified TDSE was solved for the scattered wave
function from # = 0 to ¢t = 22 using the leapfrog method
with Ar = 0.0025 [20]. The computational domain was
chosen so that (xg, xy) = (—3,3) with the spacing
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FIG. 1 (color online). (a) The incident, scattered, and total wave
functions obtained from the scattered wave formalism (@). The
wave functions obtained from the integration of the TDSE using a
large spatial grid (curves) and from the non-Markovian TDSE (L)
with the Eckart barrier in arbitrary units (dotted line) at r = 4.
(b) The probability flux at the boundaries obtained from the scat-
tered wave formalism (@) and from the integration of the TDSE
using a large spatial grid (curves).

Ax = 0.1. Figure 1(a) displays the probability densities
at t = 4 for the incident, scattered, and total wave func-
tions. This figure shows that the reflected and transmitted
wave packets are clearly separated and the reflectionless
wave packet propagation through the boundaries has
been achieved. If the wave function was reflected by the
boundaries, interference effects in the probability density
would be noted. In addition, the total wave function
(W =® +Y) is in excellent agreement with the exact
result obtained by solving the TDSE using a large spatial
grid without employing open boundary conditions.

Figure 1(a) also shows the total wave function obtained
by solving the non-Markovian TDSE [4] (the time step
is At = 1077). Since this approach includes convolution
integrals over the history of the system involving the
Green functions for the reservoirs (the region outside the
computational domain) and these Green functions display
strongly oscillatory behavior, the need for a small time step
to accurately estimate the memory integrals greatly in-
creases the computational effort even for one-dimensional
problems. Therefore, the scattered wave formalism can be
several orders of magnitude faster than the integration of
the non-Markovian TDSE.

Figure 1(b) shows the time-dependent probability flux at
the left and right boundaries. Initially, the wave packet
starts outside the computational grid, and then it enters
the grid and interacts with the potential barrier. The gradual
vanishing of the probability flux at the two boundaries
indicates that as time progresses the resulting reflected
and transmitted wave packets completely leave the com-
putational grid without reflecting from the boundaries.
Also, the probability flux obtained from the scattered
wave formalism is in excellent agreement with the exact
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FIG. 2 (color online). Potential energy diagram in the channel
region for the transistor model. The potential energy is shown for
the vertical (x, y) slice at the middle of the channel along the
y direction. The left side connects to the source electrode from
which the incident wave packet is launched, the right side leads
to the sink electrode, and the gate occupies the region along the
x direction between 20 and 30 nm.

030401-2



week endin,

PRL 107, 030401 (2011) PHYSICAL REVIEW LETTERS 15 JULY 2011

result. The absence of numerical reflections at the bounda-
ries presents clear evidence for the validity of the outgoing
wave boundary conditions.

In the second application of the scattered wave formal-
ism, the transport of a quantum wave packet in the con-
duction channel of a field effect transistor will be
computed. The channel region has dimensions along
(x,y,z) given by 50 nm X 2.5 nm X 2.5 nm. In this re-
gion, a lattice of grid points was introduced, with 201
points along the channel axis and 11 points in each of the
two transverse directions.

The initial wave packet launched from the source region
is defined as the product of a Gaussian function along the x
direction multiplied by ground state wave function for a
two-dimensional box: ®(x,y,x, 7 =0) = g(x,r = 0)X
x(y, z). For the Gaussian function, the parameters are
E.=0.06eV (translational energy), 8=0.6X10'7 (width
parameter), x, = —8 nm (center of wave packet), and the
effective mass is my (free electron mass).

In this study, the potential energy in the channel region is
defined by the boundary conditions: the source region is
grounded, the electric potential in the drain region is 0.2 V,
and the gate is biased at —(0.2 V. The resulting potential
energy function shown in Fig. 2 displays a ramp leading
from the source down to the drain with a superim-
posed rectangular barrier in the gate region. This electron
potential energy is similar to that used in previous compu-
tational models [12,15-17].

The scattered wave packet in Eq. (2) was propagated by
introducing an injection boundary condition for the inci-
dent wave function. In this approach, the time dependence
of the incident packet was calculated on the boundary
surface separating the source region from the conduction
channel. Then, using the injected function as a source term
for Eq. (2), both the incident function and the scattered
function were propagated through the conduction channel.
The outgoing wave boundary condition was applied to @
only on the right (channel-drain) boundary, but this type of
boundary condition was applied to Y on both the left and
right boundary surfaces. In particular, the following equa-
tion was used to compute the scattered wave function on
the left boundary: Y(0,y,z) = Y(Ax, y, 2)?/Y(2Ax, y, 2).
A similar condition was employed at the right boundary of
the channel region.

Computational results were obtained for propagation
times up to 650 fs. In Fig. 3, isosurface plots are shown
for the real part of the scattered wave packet at 3 times: 3(a)
175 fs; 3(b) 225 fs; 3(c) 300 fs. These isosurfaces were
drawn for values given by £0.05y, where v is a convenient

FIG. 3 (color online). Isosurface plots for the scattered wave
packet at three times: (a) T =175fs, (b) T =225 fs,
(c) T =300 fs. Surfaces are drawn for positive [dark gray
(red)] and negative [light gray (cyan)] values of the real part
of this wave function. These isosurfaces are plotted for the
values *0.05y where vy is a scale factor defined in the text.
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FIG. 4 (color online). Flux vectors for a wave packet propagat-
ing in a 2D region are shown at r = 0 and ¢ = 100 fs. The initial
packet is launched toward the step potential, which begins at z =
25 nm. At the later time, the contour map of real (W) and the flux
map show that the packet has partially transmitted the transparent
boundaries along the top and right edges. The ratio method
applied along the normal vectors to the two boundary surfaces
accurately describes propagation through these surfaces.

scale factor, y = 4 X 10'3. The scattered wave packet is
created at earlier times on the left side of the gate region, but
in 3(a) the scattered wave is starting to form on the drain
side of the gate. In 3(b), the scattered wave has built up on
the drain side of the gate and a reflected component con-
tinues to form on the source side of the gate region. These
two parts are connected by a smaller diameter tube extend-
ing through the gate region. In 3(c), this tube has disap-
peared from view and the components to the left and right
of the gate are moving through the transparent boundaries
into the source and drain regions.

In the previous examples, when crossing open boundary
surfaces wave packet propagation occurred parallel to the
surface normals. In the final example, flux vectors for the
propagating packet make oblique contact with two bound-
ary surfaces. Figure 4 shows flux vectors for the initial
packet in a 2D region. The potential energy is zero except
for the region z = 25 nm, where V = —0.03 eV. This
wave packet is launched toward the upper right corner
with a wave vector given by k, = 1.15 nm™! and k, =
1.02 nm~'. As time proceeds, the wave function is re-
quired to vanish along the left and lower boundaries, but
the right and top boundaries are open. The figure also
shows a contour map and flux vectors for the packet at
t = 100 fs as it exits the transparent boundaries, where the
ratio method was applied along the direction normal to
each boundary surface. These results are in excellent
agreement with those obtained by direct propagation in a
much larger 2D region. The ratio method thus describes
oblique propagation through boundary surfaces.

Some features of the scattered wave formalism are as
follows. The scattered wave function is solved on a

reduced computational grid involving only the interaction
region of the potential with outgoing wave boundary
conditions on surfaces leading to the source and drain
regions. At each time step, the scattered wave function at
the interior grid points is employed to determine this
function at the boundaries. Unlike non-Markovian ap-
proaches involving memory kernels [4], prior values of
the wave function at the boundaries are not required to
determine the current wave function at the boundaries.
In addition, this formalism can be readily applied to other
open quantum systems in higher dimensionality without
calculating the Green functions for different contacts. As
demonstrated in the current study, the scattered wave for-
malism allows accurate, efficient, and stable computations
for long-time propagation. Additional computational re-
sults will be described in future publications.
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