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The recently discovered spin Seebeck effect refers to a spin current induced by a temperature gradient

in a ferromagnetic material. It combines spin degrees of freedom with caloric properties, opening the door

for the invention of new, spin caloritronic devices. Using spin model simulations as well as an innovative,

multiscale micromagnetic framework we show that magnonic spin currents caused by temperature

gradients lead to spin transfer torque effects, which can drag a domain wall in a ferromagnetic

nanostructure towards the hotter part of the wire. This effect opens new perspectives for the control

and manipulation of domain structures.
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The occurrence of spin currents or spin accumulation in
a ferromagnet due to a temperature gradient is called spin
Seebeck effect (SSE). The existence of this novel effect
was recently demonstrated in thin-film samples of a me-
tallic ferromagnet [1]. The authors suggested that, due to
spin-dependent chemical potentials in the ferromagnet,
the spin-up and spin-down electrons diffuse to opposite
ends of the sample which was placed in a temperature
gradient. This spin-dependent diffusion would then create
a position-dependent spin accumulation, which was de-
tected via the inverse spin Hall effect. Later on it was
shown that the SSE is not limited to metals but occurs in
dilute magnetic semiconductors [2] and even in insulators
[3]. The existence of the SSE in insulators clearly shows
that no electron transport is necessary for its occurrence
[4]. Though the details of its origin and how to describe it
theoretically remain unclear it is obvious that the SSE can
be expected to lead to the development of new spin calo-
ritronic devices, combining the spin degrees of freedom
with caloric properties.

Theoretical descriptions of the SSE are mostly based on
the transport of heat by diffusive motion of conduction
electron in a ferromagnetic metal [5,6]. But literally a spin
current is a current of angular momentum and not neces-
sarily connected to a charge current. Magnons do also carry
angular momentum and, hence, a spin current can be solely
magnonic [4,7]. Obviously, only a magnonic spin current
can possibly explain the experimental observation of a SSE
in insulators [3]. Even in a metal a magnonic SSE must
appear in addition to charge-based currents since magnons,
thermally excited in the hotter region, must always diffu-
sively move towards the colder region. Hence in a ferromag-
netic metal one can in principle expect both types of Seebeck
effects, the temperature gradient leading to a charge-based
spin current as well as a magnonic spin current.

Furthermore, only the magnonic SSE can explain
experiments where the nanostructure was cut, with
that blocking any possible charge current, but the spin
accumulation remained unaltered [2]. Hence, we expect

magnons to play an important role for the understanding of
the SSE, though much less attention has been paid so far to
the theory of magnonic spin currents [8,9]. Even for the
case of a metal they might be relevant since so far it is not
clear how big the two contributions, charge-based and
magnonic, to the SSE are. It is clear, however, that only
magnonic spin currents can exist in an insulator.
Charge-based spin-polarized currents following from

electrical fields in a spin-polarized material are known to
lead to spin transfer torque (STT) effects, that can be
exploited for the control of domain wall (DW) motion
[10–12]. The existence of considerable STT following
from spin currents due to the SSE have been forecast
accordingly [9,13]. For the case of a single DW in a nano-
wire this torque should in principle lead to DW motion
caused—via the SSE—by temperature gradients.
In the following we will demonstrate the existence of

thermally driven DW motion caused solely by magnonic
spin currents. Neglecting electron currents our model will
be able to describe insulators and a theoretical description
of the magnetic degrees of freedom (without any coupling
to electron currents) must be sufficient. In the spirit of a
multiscale modeling approach [14] we present two differ-
ent views on thermally induced DW motion, namely, an
atomistic approach resting on the stochastic Landau-
Lifshitz-Gilbert (LLG) equation of motion for an atomistic
spin model and a micromagnetic approach via the Landau-
Lifshitz-Bloch (LLB) equation of motion, which has been
proven over the last decade to link successfully micro-
magnetic and thermodynamic properties of ferromagnets.
To illustrate the basic concept let us start discussing the

behavior of a single DW in a nanowire. We assume the DW

to be transverse with a 0 K DW width given by � ¼
�

ffiffiffiffiffiffiffiffiffiffi
A=K

p
where A is the exchange stiffness and K the

uniaxial anisotropy constant. For finite temperature its
fundamental thermodynamic potential is the free energy
density �FðTÞ ¼ �E� T�S, where �E is the internal
energy density and �S the entropy density of the DW. In
the 0 K limit it approaches the well-known micromagnetic
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expression �FðT ¼ 0Þ ¼ 2
ffiffiffiffiffiffiffi
AK

p
. For finite temperature

�FðTÞ is a monotonically decaying function of tempera-
ture [see Fig. 1(a)] vanishing at the Curie temperature TC

[15]. To minimize its free energy the DW must move
towards regions with higher temperatures. Assuming a
temperature gradient dT=dx along the space coordinate
x of the wire a thermal pressure (force density)
p ¼ �ðdF=dTÞðdT=dxÞ will act on the DW. Following
Ref. [15] a typical temperature gradient of a DW free
energy density is of the order of 2� 10�5 J=m2 K. In
modern Laser experiments temperature gradients can be
of the order of 1000 K=�m which would create a pressure
of 2� 105 N=m2. This corresponds to a Zeeman pressure
2MB of a field of roughly 5 mT for a material with a
magnetization M of 2� 106 A=m. This effect should
clearly be measurable.

However, these purely thermodynamic considerations
assume local equilibrium. Though magnons do implicitly
contribute to the temperature dependence of the free en-
ergy (and all other magnetic properties) a flow of magnons,
which is a nonequilibrium phenomenon, is not explicitly
taken into account. From a more microscopic viewpoint
thermal excitations are explicitly described in terms of
spin waves or magnons. As shown in Fig. 1(b) the hotter
region of a nanowire would contain a higher density of
magnons, which by diffusive motion move into the cooler
region. Assuming conservation of angular momentum, the

magnonic spin current drags the DW towards the hotter
region. Note that the two pictures do indeed complement
each other but only the microscopic model would allow for
a calculation of nonequilibrium properties, while the ther-
modynamic picture at least locally assumes the existence
of a free energy—an equilibrium property.
In the following, we begin our numerical investigation in

terms of a spin model which is naturally capable of describ-
ing spin waves. We consider a highly anisotropic material
with a well-localized DW. The details of the Hamiltonian,
which was originally derived to describe the magnetic
properties of a highly anisotropic material, are described
in Ref. [16]. Most importantly, this Hamiltonian describes a
generic ferromagnetic material with a TC of about 700 K
and a large uniaxial anisotropy, leading to well-localized
DWs with a DW width of about 4 nm.
In these simulations, we use Langevin dynamics, i.e.,

simulations of the stochastic LLG equation of motion,

_Si ¼ � �

ð1þ �2Þ�s

ðSi �Hi þ �Si � ðSi �HiÞÞ; (1)

for unit vectors Si, which represent the normalized
magnetic moment of an atomic unit cell in the classical
limit. �s is the magnitude of that magnetic moment and
assumed temperature independent. The internal field is

Hi ¼ � @H
@Si

þ � iðtÞ and thermal fluctuations are included

here as an additional white-noise term � iðtÞ. � is the
absolute value of the gyromagnetic ratio and � is the
microscopic damping constant, which describes the cou-
pling of the spin system to the heat bath phenomenologi-
cally. The heat bath is provided by the electronic degrees
of freedom as well as by the lattice and it defines the
temperature in the canonical ensemble [17].
Wemodel a nanowire of size of 128� 16� 16 unit cells

of an fcc lattice with lattice constant 0.38 nm. By fixed,
antiparallel boundary conditions a DW is forced into the
system. Along the long axis (x) we apply a given tempera-
ture gradient. Initially the DW is positioned in the middle
of the nanowire and the DW profile is transverse in the
xz plane. Figure 2 shows the DW at different times for a

(a)

(b)

FIG. 1 (color online). (a) Temperature dependence of the free
energy �F=J and the internal energy �E=J of a DW in a high
anisotropic ferromagnet from spin model simulations [15] where
J is the sum over all exchange integrals for a single atomic spin.
The reduced magnetization is also shown for comparison. The
TC is about 700 K. (b) Sketch illustrating the magnon current
through a DW leading to DW motion when conservation of
angular momentum is assumed.

FIG. 2 (color online). All three magnetization components of
the DW profiles at different times (t1 ¼ 0:0 ns, t2 ¼ 0:5 ns, and
t3 ¼ 1 ns). � ¼ 0:1 and dT=dx ¼ 0:197 K=nm.
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temperature gradient of dT=dx ¼ 0:197 K=nm. As one
can see the DW moves towards the hotter end of the wire
and its shape changes slightly due to the fact that the
magnetization shrinks approaching the hotter region.
Note that the DW motion here is accompanied by
precession.

As we have already argued, this type of DW motion has
two different origins: on the one hand the temperature
dependent change of the free energy of the DW and,
on the other hand, the continuous stream of magnons
passing the DW. The action of the magnons can be sepa-
rated from the thermodynamic aspects in simulations
where the temperature is constant (e.g., zero) in that part
of the system, which contains the DW, and magnons are
injected from a distant, hotter region, which acts as a
magnon source. In this case our simulations (not presented
here) do indeed indicate a domain motion as well, though
the thermodynamic equilibrium properties of the DW do
not vary during its motion. Magnon diffusion lengths have
been reported to be up to 1 mm [8] in materials with low
damping so that normally one can expect magnons to pass
DWs easily. On the other hand, the flow of magnons can be
interrupted in the high damping limit where the diffusion
length of the magnons is limited to below the DWwidth. In
this limit temperature gradient driven DW motion is only
due to the spatial variation of the free energy and can be
simulated using an innovative micromagnetic framework.

Furthermore, for atomic resolution a DW is already a
rather large object and one has to follow that moving object
for up to several nanoseconds to obtain an average velocity.
Because spin model simulations are much too demanding
in terms of computation power, a systematic investigation
of the DW motion, its velocity, and its mechanism can
hardly be achieved. Here, a micromagnetic framework
resting on a continuum model for the magnetization is
needed. Conventional micromagnetics, resting on the
LLG equation of motion, is a low temperature approach
and certainly not valid in this case where temperature
gradients dominate the physical behavior of the system.
However, an improved framework for thermal micromag-
netic calculations was recently developed [14]. It rests on
the LLB equation of motion [18] for a thermally averaged
spin polarization mi. This equation of motion does not
conserve the length of the magnetization vector, which
here represents a thermal average of the fluctuating spin
variable Si of Eq. (1). It rather allows for longitudinal
fluctuations of the magnetization in space and time and
all relevant magnetic material parameters become func-
tions of temperature. The LLB equation of motion reads

_mi ¼ ��mi �Hi
eff þ

��jj
m2

i

ðmi �Hi
effÞmi

� ��?
m2

i

mi � ðmi �Hi
effÞ: (2)

Besides the usual precession and relaxation terms, the LLB
equation contains another term which controls longitudinal

relaxation. Here, �k and �? are dimensionless longitudi-

nal and transverse damping parameters that are weakly
temperature dependent [14]. The effective fields Heff are
given by

Hi
eff ¼

mi
xex þmi

yey
~�?

� 2A

m2
eM

0
s�

2

X
j

ðmj �miÞ

þ 1

2~�k

�
1�m2

i

m2
e

�
mi: (3)

Here, the first term represents the anisotropy field which
makes the z axis the easy axis of the model. The second
term is the exchange field where M0

s is the zero-
temperature saturation magnetization and � is the cell
size of the mesh. The thermodynamic equilibrium input
functions such as equilibrium magnetization meðTÞ,
exchange stiffness AðTÞ, and susceptibilities ~�kðTÞ and

~�?ðTÞ have been calculated in a previous paper [14], based
on the same spin model, which we used in the previous
section.
In the following we model a nanowire of the size of

about 197 nm� 12 nm� 12 nm with a cell size of
0.8 nm. As before, along the long axis (x) we apply a
constant temperature gradient and fixed, antiparallel
boundary conditions forcing a DW into the system.
Figure 3(a) shows the position of the DW versus time for
two different, microscopic damping constants �. While for
� ¼ 1 the DW motion is smooth with constant tilting
angle, for smaller damping constant the DW motion is
accompanied by oscillations, indicating already that for

(a)

(b)

FIG. 3 (color online). (a) DW position versus time for two
different temperature gradients. (b) DW velocity versus tempera-
ture gradient for two different damping constants �.
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this new type of DW motion a Walker breakdown [19]
exists [see discussion of Fig. 3(b)].

This DW motion is driven by the change of the effective
fields of the LLB equation due to the temperature (i.e.,
space) dependent change of the thermodynamic properties
of the DW. The most important role is played by the
exchange fields. Following Eq. (3) the effective exchange
field acting on one central spin in the DW is zero in
equilibrium. Assuming that the system is now heated
from one side, the magnetization vector on the hotter
side shrinks. This gives rise to an effective exchange field
acting on that central spin. This field has two components,
one aligned with the magnetization vector, shortening its
length, and one perpendicular to the magnetization vector.
The latter part leads to additional torque terms in the LLB
equation, which drive the DW motion. These torque terms
correspond to the STT terms for DWs driven by spin-
polarized currents [10–12], though striking differences
exist. (i) Here naturally both terms, the adiabatic as well
as the nonadiabatic term appear via the third and first term
on the right-hand side of Eq. (2). Interestingly, the adia-
batic term is smaller by a factor of �?. (ii) An additionally
longitudinal term appears, which changes the length of the
magnetization vector and with that the shape of the DW.

Figure 3(b) shows the DW velocity versus temperature
gradient for different damping constants. Once again, in
the high damping limit (� ¼ 1) the DW slides in a constant
plane without any precession. In that case the DW velocity
is proportional to the temperature gradient. In the case of
the lower damping constant, the DW slides without pre-
cession until the Walker breakdown is reached. Above this
threshold the DW motion is accompanied by precession
and the DW velocity decreases, deviating from the linear
behavior. The Walker breakdown comes from the fact that
the plane defined by the magnetization rotation is pinned
by the stray field of the DW (here to the y-z plane). Above
the Walker threshold the driving torque is strong enough so
that the plane containing the DW is depinned and the DW
starts rotating while it is moving. This pinning and depin-
ning leads to the oscillatory motion of the DWobserved in
Fig. 3(a). A detailed quantitative investigation of the
Walker breakdown is beyond the scope of this Letter but
a similar behavior is found analytically [11,12,20], numeri-
cally [21] as well as experimentally [22] for DWs driven by
spin-polarized currents in the nonadiabatic case.

In conclusion, we have demonstrated that temperature
gradients in a nanowire cause a DWmotion via a magnonic
SSE. Microscopically, this motion is due to a magnonic
spin current where magnons move from the hotter into the
cooler region. Because of the conservation of angular
momentum, this spin current drags the DW into the hotter
region. On a larger scale, magnons lead to a variation of
thermodynamics quantities, which enter the exchange
fields of a micromagnetic equation of motion—the LLB

equation. These altered effective fields create spin torque
terms, which drive the DW motion. Both pictures, the
microscopic as well as the thermodynamic one, are in
agreement. Nevertheless, one should note that in the ther-
modynamic picture magnons enter the equation of motion
only effectively. Here, one has to assume that the magnetic
system is locally in equilibrium, with the magnonic diffu-
sion length smaller than the DWwidth. The DW velocities,
which we forecast, can be of the order of 50 m=s. For lower
damping constants this velocity could be achieved in tem-
perature gradients much lower than those investigated here.
Currently, we are not aware of any direct measurement of
DW motion due to temperature gradient though a variation
of the pinning fields of a DW in the vicinity of a laser spot
was already measured [23]. Overall we expect this new
type of DW motion to be measurable and, hopefully, to
open the door for the development of spin caloritronic
devices with new functionalities.
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