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We present cross sections for electron-impact ionization and simultaneous ionization plus excitation of

helium by electron impact. The results are obtained from a fully nonperturbative close-coupling formalism

using our B-spline R-matrix approach. A large number of pseudostates in the expansion of the wave

function represent the coupling to the ionization continuum. We obtain excellent agreement with the

directly measured experimental cross section ratios (Bellm et al., Phys. Rev. A 75, 042704 (2007)) for

ionization leaving the residual Heþ ion in either the 1s ground state or the n ¼ 2 (2sþ 2p) excited states.
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It has been over a decade since one of the most fundamen-
tal problems in atomic collision physics, the ionization of
atomic hydrogen by electron impact, a so-called (e, 2e)
process, was solved in a fully nonperturbative way by
Rescigno et al. [1] using the ‘‘exterior complex scaling’’
(ECS) method. The very same problem was also solved, to
comparable accuracy, by the time-dependent close-coupling
(TDCC) [2] and the time-independent convergent close-
coupling (CCC) [3,4] approaches. The major difficulty in
the treatment, namely, the complicated boundary conditions
due to three free charged particles in the final state, is
effectively avoided in both the ECS andTDCC formulations.
In the CCC method, one first solves an excitation problem
with simpler boundary conditions for the discrete (bound)
pseudostates representing the ionization continuum. In a
second step, the corresponding transition matrices are trans-
formed to approximate the ionization process. Many of the
lessons learned in describing the (e, 2e) process for atomic
hydrogen have since been used also in the full breakup
(double ionization) of the He atom by photon impact, either
in the steady-state [4,5] or the short-pulse regime [6,7].

The natural extension of the three-body Coulomb prob-
lem to a four-body case is electron impact of helium, in
which four charged particles (three electrons and the nu-
cleus) are involved. In this case, the situation is much more
complicated than in atomic hydrogen, due to the significant
electron-electron correlations already in the initial bound
state. Nevertheless, provided one electron remains in the
ground ð1sÞ2S state of the residual Heþ ion, this electron
may, to a high degree of accuracy, be treated as a spectator.
With this simplification, the CCC method has been very
successful in describing the corresponding (e, 2e) pro-
cesses as well [8,9]. In fact, the CCC predictions for the
triple-differential cross section (TDCS) for ionization
without excitation [10] were believed to be sufficiently
accurate that they were used [11]—instead of measured
data—to generate absolute cross sections for ionization
with excitation to the n ¼ 2 and n ¼ 3 states of Heþ
from the experimentally determined cross section ratios
[12,13] for ionization with and without excitation.

To our knowledge, there has been no fully nonperturba-
tive theory available to date to treat in detail the highly
correlated ionization plus excitation process in helium.
This is the basic four-body Coulomb problem, even though
only two electrons are free in the final state while the third
one remains bound to the He2þ nucleus. Interestingly, not
even the total cross section (integrated over the detection
angles of both final-state continuum electrons and the
energy loss of the projectile) is currently known to a
satisfactory degree of accuracy (see [14] and references
therein for a detailed discussion). Although Pindzola et al.
[15] published total cross sections for three energies from
a TDCC model, the work was not pursued to angle-
differential observables. No ECS or CCC predictions of
this process have been published either.
A partially successful theory for the ionization-excitation

process has been a hybrid approach, in which the interaction
of a ‘‘fast’’ projectile electron with the target is described by
a first-order or second-order distorted-wave approach, while
the initial bound state and the scattering of a ‘‘slow’’ ejected
electron from the residual ion is treated by a convergent R
matrix with pseudostates (RMPS) expansion. These DWB1-
RMPS [16] and DWB2-RMPS [17] models were formu-
lated for highly asymmetric kinematics and small energy
losses compared to the incident energy. The method proved
indeed applicable to such situations (see [18] as an ex-
ample), but it failed when these conditions were no longer
fulfilled [11,13]. A four-body distorted-wave method [19]
used asymptotically accurate wave functions, but it suffered
from serious shortcomings in the region where the collision
most likely occurs and, consequently, was unable to repro-
duce the experimental data [11].
Given its success for electron impact ionization of

atomic hydrogen and ionization without excitation of
helium, the close-coupling expansion has remained a
promising candidate to tackle the ionization with excita-
tion process. In this Letter, we formulate the problem in the
framework of the B-spline R-matrix (BSR) approach [20].
This method has enjoyed significant success in the treat-
ment of low-energy, near-threshold electron collisions with
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complex atoms. Since a comprehensive list of publications
is impossible, we refer to [21] as a recent example and to
[22–24] for applications to e-He collisions.

The key point of the method is the use of B splines as a
universal and effectively complete basis to describe the
projectile electron in the close-coupling expansion of the
collision system. A distinctive feature of our BSR imple-
mentation is the possibility to employ individually opti-
mized, and hence ‘‘nonorthogonal’’ orbitals to describe
the target states, and we do not restrict the projectile
orbitals to be orthogonal to the target orbitals either.
Although the lack of these restrictions makes the setting
up of the Hamiltonian matrix significantly more compli-
cated than in the standard R-matrix approach [25], the
flexibility of the method has proven to be a critical advan-
tage on many occasions.

In recent calculations [21–24], we already introduced a
few pseudostates in the BSR close-coupling expansion.
The principal purpose of these states, however, was to
further improve the target description and to represent
the contribution from the ionization continuum to such
physically important effects as the polarization of the
target by the projectile. Here we extended this approach
substantially by including a large number of pseudostates
for a rigorous treatment of the target continuum. As a
result, we can now consider ionization processes as well.

Specifically, we are interested in the ionization of an
atom by electron impact, schematically written as

e0ðk0;�0ÞþAðL0;M0;S0;MS0Þ
!e1ðk1;�1Þþe2ðk2;�2ÞþAþðLf;Mf;Sf;MSf Þ; (1)

where the ki are the linear momenta of the incident,
scattered, and ejected electrons, respectively, and the �i

are their spin projections. Furthermore, L0, S0 and Lf, Sf
are the orbital and spin angular momenta of the initial
(N þ 1)-electron atom and the residual N-electron ion,
with the corresponding magnetic quantum numbers M0,
MS0 and Mf, MSf . Since we are using a nonrelativistic

model, we can handle all spins and spin components by
Clebsch-Gordan coefficients. To simplify the notation, we
will omit these quantum numbers below.

For a complete description of this process, we need the
ionization amplitude

fðL0;M0; S0; k0 ! Lf;Mf; Sf;k1; k2Þ: (2)

In the continuum pseudostate approach [3], one begins by
replacing the true continuum orbitals of the ejected elec-
tron by a square-integrable representation, usually ob-
tained by diagonalizing the target Hamiltonian in an
appropriate basis. The total, angle-integrated ionization
cross section can then be obtained from the excitation cross
sections of the pseudostates. To obtain the more detailed
angle-differential cross sections, however, one needs to
first project the discrete pseudostate functions to the true

continuum functions at the proper ejected electron energy
and construct the ionization amplitude (2).
In our method, the atomic wave function describing the

(N þ 1)-electron system is expanded in terms of products
of the N-electron ionic states and radial functions for the
outer electron. For He (N ¼ 1) specifically, we use

�ðLSÞ ¼ A
X

i;j

f’ðniliÞPðnjljÞgLS þ�ð1s2Þ: (3)

The operator A denotes the proper antisymmetrization. It
implies that the target function ’ðniliÞ is coupled to the
outer electron represented by PðnjljÞ through the usual

angular momentum rules for total orbital angular momen-
tum L and spin S. In our case the functions ’ðniliÞ are the
hydrogenic orbitals 1s, 2s, and 2p for Heþ.
In our approach, the radial functions

Pðnj; ljÞ ¼
X

k

bkjBkðrÞ (4)

are expanded in a B-spline basis. The vectors of unknown
expansion coefficients bj for each orbital are found by

diagonalizing the target Hamiltonian matrix inside a box
of radius a. These functions are forced to vanish at the edge
of the box. Note that the nonorthogonal orbital technique
implemented in our BSR code allows us to use an inde-
pendently optimized multiconfiguration expansion for the
initial 1s2 state. We obtained an energy of �2:90175 a:u:
for this state.
As mentioned above, an important property of B splines

is that they form an effectively complete basis over the
interval spanned by the knot sequence. The number of
physical states that we can generate depends on the radius
of the box. Along with the physical states, the scheme
provides a set of pseudostates that represent the Rydberg
spectrum and the continuum. We chose a ¼ 15a0 (where
a0 ¼ 0:529� 10�10 m is the Bohr radius) and used 44
B splines of order 8 on a semiexponential grid of knots.
This resulted in 525 physical and pseudo target states that
covered the energy region up to 300 eV with S, P,D, and F
symmetries. The set of pseudostates contained the configu-
rations 1sn1l1, 2sn2l2, and 2pn3l3, with the latter two sets
describing doubly excited autoionizing states and the
ionization-excitation process.
We then obtained the scattering amplitudes for excita-

tion of all pseudostates using our BSR complex [20] for
electron collisions. Contributions from all (N þ 2)-
electron symmetries with total orbital angular momentum
� 25 were included in the partial-wave expansion. The
present model contained up to 1303 scattering channels,
leading to generalized eigenvalue problems with matrix
dimension up to 80 000 in the B-spline basis. The
corresponding solutions were obtained with a newly de-
veloped parallelized version of the BSR complex.
The last, and most crucial step in the process, is the

generation of the ionization amplitudes (2). This is done
by summing up the amplitudes for excitation of all the
energetically accessible pseudostates (index p in Eq. (5)
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below), with the expansion factors given by the overlap of
the pseudostates and the true continuum function.
Specifically, we calculate

fðL0;M0;S0;k0!Lf;Mf;Sf;k1;k2Þ
¼X

p

h�k�
2

f j�ðLpSpÞifðL0;M0;S0;k0!Lp;Mp;Sp;k1pÞ:

(5)

Here the function�
k�
2

f is the close-coupling solution of the

e-Heþ collision problem with the boundary condition of
incoming waves in all channels and an outgoing wave in
the channels represented by the ionic state with quantum
numbers Lf, Mf, and Sf, respectively.

Note that �
k�2
f and �ðLpSpÞ have different energies for

the continuum electron represented by k2 and the electron
in the pseudostate. Because of energy conservation, exci-
tation of �ðLpSpÞ leads to k1p � k1 for the projectile.

While interpolating the transition-matrix elements works
well for the single-channel case [3], our direct projection
method is necessary to maintain the crucial channel infor-
mation in multichannel situations. This makes Eq. (5),
which is the generalization of Eq. (15) of [8] for multi-
channel cases, a suitable approximation for the true ion-
ization amplitude. More details will be given in a separate
publication.

The TDCS for He can be written as

d�f

dE1ð2Þd�1d�2
¼ k1k2

k0

X

Mf

jfðMf;k1; k2Þj2; (6)

where we have simplified the notation of the amplitude (5)
by omitting k0 as well as the quantum numbers L0 ¼
M0 ¼ S0 ¼ 0 and Sf ¼ 1=2. We emphasize that the pri-

mary and the ejected electron are not treated symmetrically
in the pseudostate approach. For comparison with experi-
ment, therefore, we should also consider the ionization

process, in which the primary electron has the final mo-
mentum k2 while the ejected electron has momentum k1.
Since the two processes cannot be distinguished, the cor-
responding amplitudes should be added coherently. For
details, including spin-related factors, see [9].
As a first test of our method, Fig. 1 exhibits the TDCS

for electron impact ionization of helium in its ð1s2Þ1S
ground state with the residual ion left in the Heþð1sÞ2S
state. The primary energy E0 is 112.6 eVand the two final-
state electrons both have energies of 44.0 eV. Comparing
the present BSR results with the predictions from the CCC
and the hybrid DWB2-RMPS approaches [11], we find
overall good agreement between CCC and BSR regarding
the shape of the TDCS for all four scattering angles for
which results are available. The discrepancies between the
CCC and BSR absolute values (up to 30%) are most likely
due to the different descriptions of the initial bound state.
We use a multicore multiconfiguration expansion while the
CCC calculations were performed in the frozen-core ap-
proximation with one electron fixed in the Heþ 1s orbital.

FIG. 1 (color online). TDCS for electron impact ionization of
helium in its ð1s2Þ1S ground with the residual ion left in the
Heþð1sÞ2S state. The primary energy E0 is 112.6 eV and both
final-state electrons have energies of 44.0 eV.

FIG. 2 (color online). TDCS ratio for electron impact ioniza-
tion of helium in its ð1s2Þ1S ground with the residual ion left in
either the Heþð1sÞ2S state or the excited Heþ (n ¼ 2) states. The
primary energy E0 is either 112.6 eV (n ¼ 1) or 153.4 eV
(n ¼ 2) and both final-state electrons have energies of 44.0 eV.
The experimental data of Bellm et al. [13] are compared with the
present BSR results and with predictions from the hybrid
DWB2-RMPS approach.
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The DWB2-RMPS approach shows significant problems
for the symmetric energy sharing case in general, but
particularly for the largest detection angle of the reference
electron.

The most significant finding of the present work is
presented in Fig. 2, where we compare the BSR and
DWB2-RMPS predictions with the directly measured ex-
perimental cross section ratios [13] for ionization without
excitation (leaving the electron in Heþ in the 1s state) and
ionization with excitation to Heþ (2sþ 2p). The agree-
ment between the BSR results and the experimental data is
excellent at all angles of the reference electron between
24� and 56�, and all detection angles of the other electron
between 25� and 115�. As expected, the hybrid approach is
inappropriate for large angles of the fixed electron.

We have presented an entirely nonperturbative treatment
of the Coulomb four-body problem, as it appears in ion-
ization and particularly ionization with excitation of he-
lium by electron impact. Our formulation is based on the
ideas of treating such processes within the framework of
the close-coupling expansion. After mapping the ampli-
tudes for ionization of doubly excited pseudostates to the
ionization continuum with only one of the two electrons
remaining bound in the residual ion, we obtained excellent
agreement between our numerical results and directly
measured cross section ratios.

We plan to perform a number of additional calculations
for the (e, 2e) process in helium, especially extending our
initial tests to asymmetric kinematics. As shown in Fig. 3,
our first results are very encouraging and show similarly
good agreement with the very recent absolute experimental
data as the CCC predictions [26]. Where differences
remain, the available data do not allow for an unambiguous
judgment of which theory might be closer in the gaps
where measurements are missing.

Most importantly, however, we are already in a position
to move towards more complex targets, particularly Ne and
Ar. Many experimental data exist for these systems. While
(partially) perturbative theories have had some success and
the CCC method has been used for the ionization of s
electrons in a frozen-core model, theory has overall been
unable to systematically reproduce these data to an accept-
able degree of accuracy (see, for example, [27]). We expect
to change this situation in the near future.
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FIG. 3 (color online). TDCS for electron impact ionization of
helium in its ð1s2Þ1S ground with the residual ion left in the
Heþð1sÞ2S state. The primary energy E0 is 70.6 eV, and the final-
state electrons have energies of 41.0 eV and 5.0 eV. The experi-
mental data for the coplanar and perpendicular geometries, as well
as the CCC and TDCC predictions, are excerpts from Fig. 2 of [26].
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