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We determined the experimental value of the g factor of the electron bound in hydrogenlike 28Si13þ by

using a single ion confined in a cylindrical Penning trap. From the ratio of the ion’s cyclotron frequency

and the induced spin flip frequency, we obtain g ¼ 1:995 348 958 7ð5Þð3Þð8Þ. It is in excellent agreement

with the state-of-the-art theoretical value of 1.995 348 958 0(17), which includes QED contributions up to

the two-loop level of the order of ðZ�Þ2 and ðZ�Þ4 and represents a stringent test of bound-state quantum

electrodynamics calculations.
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Atomic physics has been a field of great importance for
the development of quantum electrodynamics (QED) since
its very beginning. Many crucial results, e.g., the Lamb
shift, were related to the energy of atomic levels. The
development of Penning trap experimental techniques has
greatly improved the accuracy of measurements.
Particularly noteworthy is the determination of the free-
electron g factor [1]. Also measurements on the bound
electron g factor [2,3] have been performed, thereby trig-
gering a high tide of interest in that field [4–6]. The
comparison between experimental and theoretical results
of the g factor not only constitutes a very precise test of
bound-state QED calculations but also has led to the accu-
rate determination of some fundamental physical constants
such as the electron mass [2,3].

Thesemeasurements were, however, restricted thus far to
the regime of light elements such as C and O. An extension
to heavier systems provides new insights into fundamental
physics: As QED terms increase with high powers of the
charge number Z, their contributions will be increasingly
visible. Besides one-loop self-energy and vacuum polariza-
tion corrections, the contribution of two-loop diagrams
shows up. Also, as the strength of the binding potential,
characterized by the dimensionless quantity Z�, with �
being the fine-structure constant, increases, a more accurate
description of QED effects in terms of this expansion
parameter is called for. Ultimately, the regime will be
reached where a nonperturbative treatment in terms of Z�
is inevitable. Moreover, as the overlap of the electronic and
nuclear wave functions increases, experimental g factors
for heavier elements can provide new access to electromag-
netic nuclear properties such as charge radii, deformation
parameters, or polarizabilities. In all these investigations, it
is highly informative if not only the charge number but at
the same time the experimental accuracy can be increased.

In the present Letter, we present a new and precise
experimental value of the g factor of the electron bound

in the ground state of hydrogenlike 28Si13þ representing
the most stringent test of bound-state QED calculations to
date. The experiment has been performed by using a single
ion confined in a Penning trap. The setup has been de-
scribed in detail in Refs. [7,8]. A triple Penning trap is
located in a magnetic field B0 of 3.76 T and is in thermal
contact with a liquid helium bath. It consists of a stack of
cylindrical electrodes of 7 mm inner diameter (Fig. 1). By
applying the proper voltages to the electrodes, three po-
tential minima in which the ion can be trapped are created.
The first one, which we call a creation trap, serves for
ionization of atoms released from a target after electron
bombardment. Consecutive ionization by an electron beam
of 4-keV energy for a couple of seconds creates ions of
different elements and isotopes in a variety of charge
states. The ion cloud is then transported to a second trap
(precision trap) by adiabatic changes of the trap potentials.
This trap consists of five electrodes in order to create a very
harmonic trapping potential. Unwanted species are re-
moved from the trap by selective excitation of their axial
oscillation until only 28Si13þ remains. Careful reduction of
the trapping potential removes ions from the trap until only
a single one is left. Its axial oscillation is brought into
resonance with a tuned superconducting circuit with a
quality factor ofQ ¼ 950 attached to an end-cap electrode.
The circuit serves for resistive ion cooling to the ambient
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FIG. 1 (color online). Sketch of the triple Penning trap. For
details, see the text.
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temperature with a time constant of�80 ms. The presence
of the single ion is monitored by a minimum in the Fourier
transform of the noise power across the tuned circuit. The
low damping constant of the axial ion oscillation and the
harmonic potential lead to a narrow and symmetric axial
resonance of 1 Hz width at a frequency of 700 kHz. The
single cooled ion is then transported to the third trap
(analysis trap) separated from the precision trap by elec-
trodes of 4.3 cm length. Similarly as in the precision trap it
is monitored by its axial oscillation at 420 kHz. The center
frequency can be determined to 20 mHz. A particular
characteristic of the analysis trap is the central ring elec-
trode consisting of ferromagnetic nickel. It distorts the
homogeneous magnetic field of the trap in a bottlelike
manner. The inhomogeneity is required to determine the
spin direction of the bound electron through the ‘‘continu-
ous Stern-Gerlach effect’’ [9]: The second term in a series
expansion of the magnetic field B ¼ B0 þ B2z

2 þ � � �
leads to a force F ¼ �rB ¼ 2�B2z acting on the mag-
netic moment � of the electron. This force adds to or
subtracts from the electric trapping force depending on
the orientation of � with respect to B0 and changes the
axial oscillation frequency. Because of the linear depen-
dence of the magnetic force on z, the oscillation remains
harmonic. For our parameters (B2 ¼ 10 mT=mm2) the
axial frequency difference for the two spin directions
amounts to 240 mHz. In order to distinguish such a small
frequency change upon an induced spin flip from fre-
quency changes arising from fluctuating trapping poten-
tials, extremely stable voltage sources are required [10]. A
voltage change as low as 3 �V would mimic a spin flip.
We use a source showing fluctuations below 1 �V in
several minutes (stahl-electronics, UM1-14). This allows
unambiguous detection of spin flips as shown in Fig. 2.
After determination of the spin direction in the analysis
trap, the ion is transferred back to the precision trap. Here
the magnetic field is homogeneous apart from a small
residual inhomogeneity of B2 ¼ 0:6ð1:4Þ �T=mm2. In

the precision trap the ion is irradiated by microwaves of
frequency �MW near the Larmor frequency of the bound
electron at �L � 105 GHz. Simultaneously the eigenfre-
quencies of the ion’s oscillation are measured: The axial
frequency �z ¼ 700 kHz as described above, the perturbed
cyclotron frequency �þ ¼ 27 MHz by coupling the cyclo-
tron oscillation to the axial oscillation through a radio-
frequency coupling field resulting in a split of the axial
resonance (‘‘double dip’’) [7,11], and the magnetron fre-
quency �� ¼ 9 kHz similarly. From the three measured
frequencies the ion’s free cyclotron frequency �c ¼
qB0=ð2�MÞ is determined via the Brown-Gabrielse invari-
ance theorem �2

c ¼ �2þ þ �2
z þ �2� [12], which makes �c

independent to trap misalignments to first order. Here q is
the ion’s charge state andM its mass. The determination of
the oscillation frequencies and the attempts to induce a
spin flip take approximately 90 s. Then the ion is trans-
ferred back to the analysis trap, and by measuring its axial
frequency it is determined whether a spin flip in the preci-
sion trap has taken place or not. A successful detection of a
spin flip is demonstrated in Fig. 2. The spin direction has
changed after the ion has been irradiated by microwaves in
the precision trap. This sequence is repeated many times at
different microwave frequencies. The total time for a com-
plete sequence including transfer and ion cooling takes
about 1000 s. When the number of successful spin flips
is recorded vs the microwave frequency, one obtains a
resonance curve as shown in Fig. 3. Here the number of

FIG. 2. Change in the axial ion’s oscillation frequency upon
induced spin flips in the analysis trap. The calculated frequency
difference is 240 mHz in a total frequency of 420 kHz in fair
agreement with the observation. Between the left and right peri-
ods, the ion was transported into the precision trap where a spin
flip was successfully induced by irradiation with microwaves.

FIG. 3 (color online). Number of observed axial frequency
jumps normalized to the total number of attempts to induce a
spin flip. As the abscissa we plot the ratio � ¼ �MW=�c of the
simultaneously measured cyclotron frequency �c and the micro-
wave frequency �MW. The data are fitted with a Gaussian by
using the maximum-likelihood method, avoiding the need
for data binning. The light gray area indicates the 68% prediction
band for the measurement data distribution, while the dark
gray area is the confidence band of the fit. The fractional
statistical uncertainty of the resonance center of this single
resonance is 4� 10�10.
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spin flips is normalized to the total number of attempts to
induce spin flips. Care has been taken to keep this number
well below 50% by adjustment of the microwave power in
order to avoid power broadening. From a maximum-
likelihood fit to the data using a Gaussian line shape, we
obtain the Larmor frequency �L ¼ g�BB0, where �B is
the Bohr magneton. Since B0 is determined through �c, we
plot the ratio � ¼ �MW=�c in Fig. 3 and denote the reso-
nance center as �0

0.

We have taken six resonance lines at different micro-
wave powers to make sure that no power-dependent line
shift occurs. Each resonance line contains about 200 data
points, and the recording took 2–3 days each. No system-
atic variation outside the statistical scatter is observed. Our
result from the weighted average of the six resonances is
�0
0 ¼ 3912:866 067ð1Þ with a 1�-fractional statistical un-

certainty of 2:6� 10�10.
Systematic shifts of the measured frequencies may arise

from different sources. Most important are image charges
which the oscillating ion induces in the trap electrodes.
Because of the dominant role of the perturbed cyclotron
frequency in the determination of the magnetic field
strength, we can neglect the effects on the axial and mag-
netron oscillation. The shift of the cyclotron frequency has
been calculated by Van Dyck et al. [13] and Porto [14]. It
amounts to �!c=!c ¼ ð3Mc2Þ=ð2a3B2

0Þ, where a is the

trap radius. For our case of M ¼ 28 u, a ¼ 3:5 mm, and
B0 ¼ 3:76 Twe obtain a fractional shift of�6:87� 10�10

with an estimated uncertainty 3:4� 10�11. We apply this
downwards shift to our experimental value of the cyclotron
frequency. Relativistic shifts �!c=!c ¼ kT=Mc2 amount
to 6� 10�13 and can be neglected as well as shifts from the
residual magnetic field inhomogeneity. Our final experi-
mental result is �0 ¼ 3912:866 064ð1Þ.

To derive the g factor from

g ¼ 2
�L

�c

qðme=MÞ ¼ 2�0qðme=MÞ; (1)

we take the electron mass as 5:485 799 094 3ð23Þ � 10�4 u
from the 2006 CODATA compilation of fundamental con-
stants [15]. The mass of 28Si13þ is calculated from the
atomic mass Mð28SiÞ ¼ 27:976 926 535 0ð6Þ u, measured
by Redshaw, McDaniel, and Myers [16], corrected by the
masses of 13 electrons and their respective binding
energies, taken from Ref. [17]. The uncertainty of these
values contributes to 2:6� 10�11 to the ion total
mass. We arrive at Mð28Si13þÞ ¼ 27:969 800 594 9ð7Þ u.
Our final experimental result for the g factor is g ¼
1:995 348 958 7ð5Þð3Þð8Þ. The first number in brackets is
the statistical and the second one the systematical uncer-
tainty, and the third one represents the uncertainty of the
electron mass.

In order to match the accuracy of the experiment, vari-
ous contributions have to be taken into account in theoreti-
cal calculations. The dominant terms such as relativistic

binding, one-loop QED self-energy, and recoil corrections
due to the finite mass of the nucleus have been sufficiently
tested in earlier experiments. Besides these, at Z ¼ 14, the
corrections due to the finite nuclear radius, higher-order
vacuum polarization effects, and two-loop QED contribu-
tions gain importance. Table I summarizes the theoretical
predictions for the 28Si13þ ion. We have found that even if
the 28Si nucleus is quadrupole deformed, terms due to the
nuclear deformation (which cannot be described by a
spherically averaged root-mean-square radius) are negli-
gible in the present case. Furthermore, the nuclear electric
polarizability and magnetic susceptibility corrections are
also not visible in the current experiment.
In this experiment, two-loop bound-state QED correc-

tions have become relevant for the first time. In previous
measurements with C [2] and O [3], the two-loop QED
effects were contributing only at the order ðZ�Þ0, i.e., in the
free-electron approximation. In the current case, the cor-
rection of order ðZ�Þ2 is clearly visible and the contribu-
tion of order ðZ�Þ4 is comparable to the experimental
uncertainty. The so far unknown two-loop QED correction
of even higher orders in Z� may be extracted from the
experimental value by using the tabulated nuclear radius

hr2i1=2tab ð28SiÞ ¼ 3:1223ð24Þ fm from Ref. [18] in the finite

nuclear size correction. Doing so we arrive at gðhoÞ2L ðZ ¼
14Þ ¼ 0:7ð1:1Þ � 10�9. Furthermore, the higher-order vac-
uum polarization terms have been tested for the first time.

TABLE I. Values of individual contributions to the g factor.
Abbreviations are as follows: ‘‘h.o.,’’ a higher-order contribu-
tion; ‘‘SE,’’ the self-energy correction; ‘‘VP-EL,’’ the electric-
loop vacuum polarization correction; ‘‘VP-ML,’’ the magnetic-
loop vacuum polarization correction; ‘‘rad-rec,’’ the leading term
of the mixed radiative-recoil correction. The value of the recoil
correction of m=M order was interpolated from the results
of Ref. [5], and the given uncertainty corresponds to the
interpolation.

Ref.

hr2i1=2 [fm] 3.1223(24) [18]

Dirac value 1.993 023 571 6

Finite nuclear size 0.000 000 020 5

One-loop QED ðZ�Þ0 0.002 322 819 5

ðZ�Þ2 0.000 004 040 7 [19]

ðZ�Þ4 0.000 001 244 6 [4]

h.o. SE 0.000 000 542 8(3) [20]

h.o. VP-EL 0.000 000 032 6 [6]

h.o. VP-ML 0.000 000 002 5 [21]

� Two-loop QED ðZ�Þ0 �0:000 003 515 1 [15]

ðZ�Þ2 �0:000 000 006 1 [19]

ðZ�Þ4 �0:000 000 001 3 [22]

h.o. 0.000 000 000 0(17) [22]

Recoil m=M 0.000 000 206 1(1) [5]

rad-rec �0:000 000 000 2 [6]

h.o. �0:000 000 000 1 [23]

Total 1.995 348 958 0(17)
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Vice versa, it is also possible to determine the nuclear
charge radius of the isotope 28Si by means of a comparison
between the experimental and the theoretical values of the
g factor [24]. Looking for the root-mean-square radius

hr2i1=2 that satisfies the equation gexp ¼ gthðhr2i1=2Þ, we
arrive at the result hr2i1=2ð28SiÞ ¼ 3:18ð15Þ fm, which is in
good agreement with the literature value [18] given above.
Although the extracted value is not competitive with the
established one, our current proof-of-principle experiment
demonstrates the feasibility of this method of nuclear
radius determination. This procedure also calls for calcu-
lations of the two-loop higher-order QED correction as it is
the main source of the nuclear radius uncertainty in the
present range of charge numbers.

In summary, the bound electron g factor of hydrogenlike
28Si13þ has been experimentally determined to 5� 10�10

fractional uncertainty. This is the most precise value of the
g factor of a bound electron. The accuracy is limited
mainly by the uncertainty of the electron mass.
Theoretical bound-state QED calculations including two-
loop corrections of orders ðZ�Þ2 and ðZ�Þ4 as well as
nuclear size and nuclear recoil corrections result in a value
of about 1� 10�9 uncertainty. The excellent agreement
between experimental and theoretical value represents to
date the most accurate test of bound-state QED calcula-
tions in strong fields. So far uncalculated values of higher-
order two-loop contributions become visible for the first
time. As a consistency check we determined the nuclear
root-mean-square radius of 28Si from the comparison of
experimental and theoretical g factors and found agree-
ment to tabulated values within our limits of error.
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