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We consider the standard model without the Higgs boson, where the Goldstone modes are described by

a nonlinear sigma model. We study the renormalization group flow of the sigma model coupling ~f and of

the electroweak parameters S and T. The condition that the couplings reach a fixed point at high energy

leaves the low energy values of ~f and T arbitrary (to be determined experimentally) and fixes S to a value

compatible with electroweak precision data.
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The nonlinear sigma model with values in a coset space
G=H arises whenever a symmetry G is spontaneously
broken to H. The best known application is the chiral
model with G ¼ SUð2Þ � SUð2Þ and H ¼ SUð2Þ (the di-
agonal, or vector, subgroup), which describes the low
energy dynamics of pions, regarded as the (pseudo)-
Goldstone bosons arising from spontaneous breaking of
chiral symmetry in the theory of strong interactions with
two massless fermion flavors. An equally important real-
ization of the same geometry describes the Goldstone
bosons that break the electroweak (EW) SUð2Þ �Uð1Þ to
Uð1Þ. In this case the Goldstone bosons do not correspond
to physical states; rather, they are transformed into the
longitudinal components of the W and Z bosons by the
Higgs phenomenon. Essentially, all we currently know
about EW interactions can be encoded in an effective field
theory of Goldstone bosons coupled to gauge fields and
fermions [1]. This would be the minimal option: In fact, it
would have no Higgs boson in the Lagrangian and hence
one less degree of freedom than the standard model (SM).

Because of its perturbative nonrenormalizability, the
nonlinear sigma model is usually regarded as a mere low
energy effective field theory. In fact, in the case of strong
interactions, the UV completion of the chiral model is
QCD, so there is no reason to look further. In the EW
case, however, things are not yet settled, and it is important
to consider all options. The simplest possibility is to embed
the nonlinear sigma model into a complex doublet trans-
forming linearly under SUð2ÞL; this renders the theory
perturbatively renormalizable (though not UV complete,
due to the positive beta function of the scalar coupling).
Technicolor provides a dynamical way of breaking the EW
group. Another possibility that we shall consider here is
that the theory is renormalizable in a nonperturbative
sense, namely, at a nontrivial fixed point (FP) of the
renormalization group flow [2]. This idea has been devel-
oped mostly in the context of gravity [3]. For other appli-
cations to the SM, see [4]. This approach has the
disadvantage that perturbation theory is at best a rough

guide. If in spite of this one considers the one-loop beta
functions, or some resummation thereof, it is easy to see
that a nontrivial FP is present [5]. It persists when one
considers in addition terms with four derivatives of the
Goldstone bosons [6] or the coupling to gauge fields [7]. It
is not there in the presence of Yukawa coupling to fermi-
ons, but it reappears if one also adds four-fermion contact
interactions [8]. In the same spirit, we will consider here
the compatibility of this hypothesis with precision EW
data. The effect of physics beyond the SM on the gauge
bosons can be tested by calculating the oblique parameters
S and T [9] and comparing with their experimental bounds.
We will study this issue by calculating the renormalization
group flow of the effective couplings representing these
parameters in the EW effective theory.
We will restrict ourselves to the bosonic sector of the

EW effective theory. We use a geometrical description of
the Goldstone bosons as coordinates ’�ðxÞ of a field UðxÞ
taking values in SUð2Þ �Uð1Þ=Uð1Þ � SUð2Þ. The lowest
order terms in the Euclidean action are

S ¼ 1

2f2

Z
d4xh��D�’

�D�’� þ 1

4g2

Z
d4xWI

��W
��
I

þ 1

4g02
Z

d4xB��B
��; (1)

whereWI
� are the SUð2ÞL gauge fields and B� is the Uð1ÞY

gauge field; g and g0 are the gauge couplings, and f is the
(dimension �1) chiral coupling. The covariant derivative
acting on ’ is

D�’
� ¼ @�’

� þWI
�R

�
I � B�L

�
3 ; (2)

while the gauge field strength tensors are WI
�� ¼ @�W

I
� �

@�W
I
� þ �IJMW

J
�W

M
� and B�� ¼ @�B� � @�B�. The indi-

ces �;� ¼ 1; 2; 3 run over the target space coordinates
while I; J;M ¼ 1; 2; 3 are SUð2Þ Lie-algebra indices. We
denote R�

I and L�
I the right- and left-invariant vector fields

on SUð2Þ, respectively. In particular, R�
I generate SUð2ÞL

and L�
3 generates Uð1ÞY .
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The gauge invariance of the SM demands that the metric
h�� be invariant under the action of these vector fields but

not necessarily under the SUð2ÞR transformations gener-
ated by L�

1 and L�
2 . The most general metric of this type is

of the form

h�� ¼ L1
�L

1
� þ L2

�L
2
� þ ð1� 2a0ÞL3

�L
3
�; (3)

where LI
� is the basis of left-invariant one-forms dual

to L�
I . The parameter a0 measures the violation of the

‘‘custodial’’ symmetry SUð2ÞR and vanishes in the bare
SM Lagrangian. Radiative corrections then induce a small
nonvanishing effective value for a0. It is therefore custom-
ary to assume that the metric h�� is bi-invariant and to

consider the SUð2ÞR breaking as due to a separate term in
the effective Lagrangian:

a0
f2

ðtr�3U
yDUÞ2 ¼ a0

f2
D�’

�D�’�L3
�L

3
�: (4)

The action contains further terms. Among these we shall be
interested, in particular, in the term

a1
1
2B��tr�3U

yW��U ¼ a1
1
2B

��WI
��RI�L

�
3 : (5)

These definitions agree with those of Refs. [10,11] except
for the rescaling of the gauge fields with the gauge cou-
plings. The running couplings a0 and a1 are related to the
oblique parameters S and T by

S ¼ �16�a1ðmZÞ þ 1

6�

�
5

12
� log

�
mH

mZ

��
; (6)

T ¼ 2

�
a0ðmZÞ � 3

8�cos2�W

�
5

12
� log

�
mH

mZ

��
: (7)

The second term on the right-hand side corresponds to
subtracting the contribution of the Higgs field with mass
mH [12].

In this Letter, we will be concerned with the renormal-
ization group running of the gauge couplings g and g0, the
sigma model coupling f, and the parameters a0 and a1.

It will be instructive to consider first the ungauged
SUð2Þ �Uð1Þ=Uð1Þ sigma model, with couplings f and
a0. Quite generally, the beta function of the sigma model is
given by a kind of Ricci flow [5]:

d

dt

�
1

f2
h��

�
¼ 1

ð4�Þ2 k
2R��; (8)

where t ¼ logk. In the basis of the right-invariant vector
fields, the Ricci tensor of the metric h�� is R11 ¼ R22 ¼
1
2 þ a0, R33 ¼ 1

2 � a0, so the beta functions of ~f2 ¼ f2k2

and a0 are

d~f2

dt
¼ 2~f2 � 1

ð4�Þ2
~f4
�
1

2
þ a0

�
; (9)

da0
dt

¼ 1

2

1

ð4�Þ2
~f2a0ð1� 2a0Þ: (10)

These beta functions admit a Gaussian FP, with ~f ¼ 0
and arbitrary a0, and two nontrivial fixed points: an

SUð2ÞR-symmetric one at a0 ¼ 0, ~f ¼ 8� � 25:13 and

another one with strongly broken SUð2ÞR at a0 ¼ 1=2, ~f ¼
4

ffiffiffi
2

p
� � 17:8. The FP at a0 ¼ 0 is UV-repulsive, and the

one at a0 ¼ 1=2 is UV-attractive. If a0 < 0, corresponding
to an elongated three-sphere, a0 decreases with increasing
energy; if 0< a0 < 1=2, corresponding to a mildly
squashed three-sphere, a0 increases with energy towards
the FP at a0 ¼ 1=2; if a0 > 1=2, corresponding to a
strongly squashed three-sphere, a0 decreases with energy
towards the FP at a0 ¼ 1=2.
Coming to the gauged case, we begin by considering the

subsystem of the couplings g, g0, and f, keeping a0 ¼
a1 ¼ 0. This is a slight generalization of a calculation
described in detail in Ref. [7]. The beta functions of the
gauge couplings are

dg2

dt
¼ g4

ð4�Þ2
1

1þ ~m2
W

�
� 16

ð1þ ~m2
WÞ2

þ 3

2

�
; (11)

dg02
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¼ 1

6

g04

ð4�Þ2
1

1þ ~m2
W

; (12)

where ~m2
W ¼ m2

W=k
2 ¼ g2=~f2. The fractions represent the

effect of thresholds and automatically switch off the beta
functions when k becomes smaller than mW . Aside from
these thresholds, the difference with the SM is due only to
the absence of the Higgs particle and is quite small, so g is
asymptotically free, while g0 has a Landau pole at a trans-
Planckian energy.

The beta function of ~f2 is

d~f2

dt
¼ 2~f2 � 1

ð4�Þ2
�
1

4

~f4

ð1þ ~m2
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þ 1

4
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þ 2g2 ~f2

ð1þ ~m2
WÞ3

þ g02 ~f2

ð1þ ~m2
WÞð1þ ~m2

BÞ

�
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1

ð1þ ~m2
WÞ

þ 1

ð1þ ~m2
BÞ
�
þ g2 ~f2

ð1þ ~m2
WÞð1þ ~m2

ZÞ
�

�
1

ð1þ ~m2
WÞ

þ 1

ð1þ ~m2
ZÞ
��
; (13)

where ~m2
Z ¼ m2

Z=k
2 ¼ ðg2 þ g02Þ=~f2 and we also define

the shorthand ~m2
B ¼ g02=~f2. The whole expression simpli-

fies drastically when the mass terms can be neglected. In
practice, one can use this approximation when k > mZ, the
heaviest mass in the theory, while for k < mB ¼ g0=f,
the lightest mass in the theory, the beta function reduces
to the first (classical) term. In the following, we will use
this approximation.
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Because of the positive beta function for g0, strictly
speaking this system does not have a FP. However, the
running of the gauge couplings is very slow, and for our
purposes it is a good approximation to treat them as con-
stants. Setting g ¼ 0:65 and g0 ¼ 0:35, we find an approxi-

mate UV-attractive FP at ~f ¼ 25:08. As expected, it is very
close to the FP of the ungauged model.

We are now ready to consider the effect of the couplings
a0 and a1. As in the ungauged case, the beta functions of f
and a0 can be extracted from the geometric beta functional
of the metric. For k much larger than all the masses

(g; g0 � ~f), the threshold fractions become equal to one,
and the beta functions simplify to

d~f2

dt
¼ 2~f2 � 1

2

~f2

ð4�Þ2 ½
~f2ð1þ 2a0Þ þ 6g2 þ 3g02�; (14)

da0
dt

¼ 1

2

1

ð4�Þ2
�
~f2a0ð1� 2a0Þ þ 3

2
g02

�
: (15)

We have neglected terms of order g2a0 or g
02a0, which are

subleading relative to those of order ~f2a0. They are not
necessarily subleading relative to the terms of order g2 and
g02 that have been written, but they would be unimportant
in what follows. Note that these beta functions reduce
correctly to (9) and (10) in the ungauged case. The first
term in (15) corresponds to a self-renormalization of the
operator (4). Diagrammatically, it corresponds to a quad-
ratically divergent Goldstone boson tadpole and cannot be
seen in dimensional regularization. The second term agrees
with the results of Ref. [11]; it is proportional to g02,
consistent with the fact that the hypercharge coupling
breaks the custodial symmetry. Its effect is to generate a
nonzero a0 even if initially a0 ¼ 0.

The fixed points of the ungauged case are slightly shifted

by the gauge couplings. They occur at (FP I) ~f ¼ 25:1,

a0 ¼ �0:000 292 and (FP II) ~f ¼ 17:7, a0 ¼ 0:501. There

is no longer a fixed point with ~f ¼ 0. This flow is illus-
trated in Fig. 1.

The beta function of a1 is

da1
dt

¼ 1

ð4�Þ2
�
~f2a1 þ 1

6

�
: (16)

Also in this case the second term agrees with the one
computed in Ref. [11], while the first comes from the
self-renormalization of the operator (5). Introducing the

FP values for ~f2 discussed above, we find the FP values
a1 ¼ �0:000 265 for FP I and a1 ¼ �0:000530 for FP II.
The eigenvalues and eigenvectors of the matrix describing
the linearized flow around these FPs are given in Table I.
Recall that negative eigenvalues correspond to UV-
attractive (relevant) directions. The point FP I has one
such direction, that to a good approximation can be iden-

tified with the parameter ~f. The point FP II has two

relevant directions that lie almost exactly in the a0-~f plane.

Within numerical errors we found a critical trajectory that
starts from FP II in the UV approximately in the direction
of (minus) its second eigenvector and reaches FP I in the IR
from the direction of its second eigenvector. The origin is
not a FP, but the beta functions become very small there.

This almost FP is IR-attractive for ~f.
We now discuss the physics of these FPs. At k ¼ mZ we

have ~f ¼ 2mZ=	 ¼ 0:7415, and the experimentally al-
lowed values for a0ðmZÞ and a1ðmZÞ are of the order of
10�3. When one evolves the flow towards higher energies,
~f, a0, or a1 will generally diverge. This is a sign that ‘‘new
physics’’ has to be taken into account. However, there may
be trajectories that hit a FP in the UV: For them, the
effective field theory description actually never breaks
down. Such trajectories are said to be ‘‘renormalizable’’
or ‘‘asymptotically safe’’ [2], and they form the so-called
‘‘UV critical surface,’’ which in the vicinity of a FP is
spanned by the relevant couplings.
Requiring that the world be described by a renormaliz-

able trajectory leads to predictions for low energy physics.
Since FP I has only one relevant direction, there is a single
renormalizable trajectory that descends from it towards the
origin. Since the beta functions go to zero for k < mZ, we

stop the flow at the scale mZ (i.e., when ~f ¼ 0:7415) and
find, at that scale,

0.5
a0

10

20

30

f

FIG. 1 (color online). Flow in the a0-~f plane. The two dots
mark the positions of FP I and FP II. Arrows point to increasing
energy.

TABLE I. Properties of the fixed points.

Eigenvector components

FP Eigenvalue ~f a0 a1

I �1:99 1.00 11:6� 10�6 14:1� 10�6

I 1.99 �0:997 0.0795 �42:2� 10�6

I 3.98 0 0 1

II �1:99 1.00 66:0� 10�6 29:9� 10�6

II �0:996 �0:998 0.0563 �40� 10�6

II 1.99 0 0 1

PRL 107, 021803 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
8 JULY 2011

021803-3



a0ðmZÞ ¼ �0:0020; a1ðmZÞ ¼ �0:0032; (17)

which are 5� away from the experimental values. The
transition takes about four or five e-foldings (a change in
scale by a factor e4–e5) which means that FP I would be
reached at an energy scale of the order of 10 TeV.

The point FP II has two relevant directions, and there-
fore there is a one-parameter family of renormalizable
trajectories that descend from it. From Fig. 1, we see
that, for such a trajectory to come close to the origin, it
has to be fine-tuned to first follow very closely the critical
trajectory towards FP I and, hence, descend. Going up-
wards from k ¼ mZ, such a trajectory would take again
four or five e-foldings to reach the vicinity of FP I and then
another four e-foldings to cross over to FP II, placing
the energy scale at which one arrives near FP II at
300–700 TeV. It is clear from Fig. 1 that these trajectories
will have a0ðmZÞ>�0:002. Numerical analysis shows
that the locus of end points of such trajectories satisfies

a1ðmZÞ ¼ �0:003 21� 0:000 52a0ðmZÞ: (18)

For a0 � 0:5, this relation is still true within a few percent.
Using Eqs. (6) and (7), this translates directly into a

linear relation between S and T, which is shown in Fig. 2,
and constitutes our main result. The dot corresponds to the
UV critical surface of FP I (17), and the half-line to the UV
critical surface of FP II. Note that the condition of asymp-
totic safety essentially fixes a1, and hence S, leaving T
arbitrary.

Standard model fermions would not change this conclu-
sion, since their contribution is already included in the
definition of S and T, but one has to make sure that they
do not spoil the FP. We have shown in Ref. [8] that the FP

of ~f is preserved if four-fermion interactions are added.
These interactions change the beta functions of S and T
only at higher loops, so we expect our conclusions to
remain valid.
Renormalizable trajectories represent UV complete

theories. We see that within this model there are such
trajectories that are in agreement with the experimental
data: S ¼ 0:01� 0:10 and T ¼ 0:03� 0:11. They pass
near FP I at scales � 10 TeV and then veer towards
FP II. There, the custodial symmetry is strongly broken,
as witnessed by the large value a0 � 0:5. This could be an
important (and unexpected) clue about the UV behavior of
the theory. In this model the conformal (FP) behavior sets
in at energies that are probably too high to make a direct
observation possible at the LHC, but there may be other
signatures. We will return to this and related questions
elsewhere.
We thank O. Zanusso for discussions.
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