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Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an

anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a

current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo

formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and

show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational

anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.
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Introduction.—The effects quantum anomalies have on
the hydrodynamics of otherwise conserved currents have
recently received much attention. Two such effects are
known: an anomalous magnetic effect [1] and an anoma-
lous vortical effect [2,3]. In the first an (external) magnetic
field induces a current via the axial anomaly, whereas the
second is the generation of a current due to the presence of
a vortex in the charged relativistic fluid. These effects have
been argued to lead to observable event by event parity
violation and a charge separation effect in noncentral
heavy ion collision at RHIC and LHC [4]. In the hydro-
dynamic constitutive relations these effects lead to the
existence of a new class of transport coefficients.

A first principle calculation of transport coefficients is
possible via Kubo formulas. The Kubo formula for the
anomalous magnetic conductivity has been derived and
applied in [5] whereas the one for the anomalous vortical
conductivity has been established recently in [6]. They are
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where J�A are the (anomalous) currents and T�� is the

energy momentum tensor. These Kubo formulas allow
the calculation of the transport coefficients in the constit-
utive relations

JiA ¼ �B
AB"

ijk@jAB
k þ �V

A "ijk@jvk; (3)

where AB
k are the spatial components of a collection of

gauge fields and vk is the local fluid velocity. See [6] for a
discussion. We note that we can substitute the fluid veloc-
ities by the gravitomagnetic potential. To do sowe go to the
rest frame of the fluid defined by u� ¼ ð1; 0; 0; 0Þ but
switch on a gravitomagnetic field in the metric according to

ds2 ¼ dt2 þ 2 ~Agd~xdt� d~x2: (4)

Using this metric we can compute the local fluid velocity

u� ¼ ð1; ~AgÞ such that ~v ¼ ~Ag. All these expressions

are valid only up to first order in the external fieldsAA
k , vk.

Plugging this into the constitutive relation (3) and noting
that Ai

g sources T0i leads to the Kubo formula for the

vortical conductivity.
We will now evaluate the Kubo formulas (1) and (2) for a

theory of N free right-handed fermions �f transforming
under a global symmetry group G generated by matrices
ðTAÞfg. We denote the generators in the Cartan subalgebra

by HA. Chemical potentials �A can be switched on only in
the Cartan subalgebra. Furthermore, the presence of the

chemical potentials breaks the group G to a subgroup Ĝ.
Only the currents that lie in the unbroken subgroup are
conserved (up to anomalies) and participate in the hydro-
dynamics. The chemical potential for the fermion�f is given

by �f ¼ P
Aq

f
A�A, where we write the Cartan generator

HA ¼ qfA�
f
g in terms of its eigenvalues, the charges qfA.

The unbroken symmetry group Ĝ is generated by the matri-

ces Tf
Ag fulfilling Tf

Ag�
g ¼ �fTf

Ag. There is no summation

over indices in the last expression. From now on we will

assume that all currents ~JA lie in directions indicated in the
preceding equation.We define the chemical potential through
boundary conditions on the fermion fields around the thermal

circle [7], �fð�Þ ¼ �e��
f
�fð�� �Þ with � ¼ 1=T.

Therefore the eigenvalues of@� are i ~!n þ�f for the fermion
species f with ~!n ¼ �Tð2nþ 1Þ the fermionic Matsubara
frequencies. A convenient way of expressing the currents is in
terms of Dirac fermions and writing

JiA ¼ XN
f;g¼1

Tg
Af

��g�
iPþ�f; (5)

T0i ¼ i

2

XN
f¼1

��fð�0@i þ �i@0ÞPþ�f; (6)

where we used the chiral projector P� ¼ 1
2 ð1� �5Þ. The

fermion propagator is
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SðqÞfg ¼ �f
g
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�tði ~!f; qÞ ¼ 1

i ~!f � tEq

; (8)

with i ~!f ¼ i ~!n þ�f, q̂
�
t ¼ ð1; tq̂Þ, q̂ ¼ ~q

Eq
and Eq ¼ j ~qj.

We can easily include left-handed fermions as well. They
contribute in all our calculations in the sameway as the right-
handed ones up to a relative minus sign.

Evaluation of Kubo formulas.—Wewill address in detail
the computation of the vortical conductivities Eq. (2) and
sketch only the calculation of the magnetic conductivities
since the latter one is a trivial extension of the calculation
of the chiral magnetic conductivity in [5].

Vortical conductivity.—The vortical conductivity is de-
fined from the retarded correlation function of the current
JiAðxÞ (5), and the energy momentum tensor or energy
current T0jðx0Þ (6), i.e.,

GV
A ðx� x0Þ ¼ 1

2"ijni	ðt� t0Þh½JiAðxÞ; T0jðx0Þ�i: (9)

Going to Fourier space, one can evaluate this quantity as
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The vertex of the two quarks with the graviton is ��f
g,

and therefore we find only contributions from the diagonal

part of the group Ĝ. Our metric is g�� ¼ diagð1;�1;

�1;�1Þ. We can split GV
A into two contributions

GV
A ðkÞ ¼ GV

A;ð0jÞðkÞ þGV
A;ðj0ÞðkÞ; (11)

which correspond to the terms �0qj and �ji ~!f in Eq. (10),

respectively. We focus first on the computation of GV
A;ð0jÞ.

The integrand of Eq. (10) for GV
A;ð0jÞ can be written as

IV
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From a computation of the Dirac trace in Eq. (12) one
has two contributions
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Using Eqs. (12)–(14) one can express GV
A;ð0jÞðkÞ as
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(15)

Note that due to the antisymmetric tensor "ijn, the two

terms proportional to qi inside the bracket in Eq. (15)
vanish. Regarding the term "ijnq

jki, it leads to a contribu-

tion�"ijnk
jki after integration in d3q, which is zero. Then

the only term which remains is the one not involving "ijn.

We can now perform the sum over fermionic Matsubara
frequencies. One has

1

�

X
~!f

�tði ~!f; ~qÞ�uði ~!f þ i!n; ~qþ ~pÞ

¼ tnðEq � t�fÞ � unðEqþk � u�fÞ þ 1
2 ðu� tÞ

i!n þ tEq � uEqþk

; (16)

where nðxÞ ¼ 1=ðe�x þ 1Þ is the Fermi-Dirac distribution
function. In Eq. (16) we have considered that !n ¼ 2�Tn
is a bosonic Matsubara frequency [5]. After doing the
analytic continuation, which amounts to replacing i!n by
k0 þ i" in Eq. (16), one gets

GV
A;ð0jÞðkÞ

¼ � i

8
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unðEq � t�fÞ � tnðEqþk � u�fÞ þ 1
2 ðt� uÞ

k0 þ i"þ tEq � uEqþk

:

(17)

The term proportional to � 1
2 ðt� uÞ corresponds to the

vacuum contribution, and it is ultraviolet divergent. By
removing this term the finite temperature and chemical
potential behavior is not affected, and the result becomes
ultraviolet finite because the Fermi-Dirac distribution
function exponentially suppresses high momenta. By mak-

ing both the change of variable ~q ! � ~q� ~k and the
interchange u ! �t and t ! �u in the part of the inte-
grand involving the term �tnðEqþk � u�fÞ, one can ex-

press the vacuum subtracted contribution of Eq. (17) as

ĜV
A;ð0jÞðkÞ ¼

i

8
kn
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ð2�Þ3
1
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�
~q2 � ð ~q � ~kÞ2

~k2

�

� X
t;u¼�

u
nðEq ��fÞ þ nðEq þ�fÞ
k0 þ i"þ tEq þ uEqþk

: (18)

The result has to be proportional to kn, so to reach this

expression we have replaced qn by ð ~q � ~kÞkn= ~k2 in Eq. (17).
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At this point one can perform the sum over u and the
integration over angles. Then one gets the final result

ĜV
A;ð0jÞðkÞ ¼

i

16�2
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� log

�
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t � ðq� kÞ2
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; (19)

where �t ¼ k0 þ i"þ tEq, and fV ðqÞ ¼ nðEq ��fÞ þ
nðEq þ�fÞ. The steps to compute GV

A;ðj0Þ in Eq. (11) are

similar. In this case the Dirac trace leads to a different
tensor structure, in which the only contribution comes from
the trace involving �5, i.e., "ijntr½���

i���
j�5�a�b� ¼

8iðanb0 � a0bnÞ. The sum over fermionic Matsubara
frequencies involves an extra i ~!f. Following the same
procedure as explained above, the vacuum subtracted con-
tribution writes

ĜV
A;ðj0ÞðkÞ ¼ � i
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where fVt ðq; k0Þ ¼ qfV ðqÞ þ tk0nðEq þ t�fÞ. The result

for ĜV
A ðkÞ writes as a sum of Eqs. (19) and (20), according

to Eq. (11). From these expressions one can compute the
zero frequency, zero momentum, limit. Since

lim
k!0

lim
k0!0

X
t¼�

log
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the relevant integrals areZ 1

0
dqqfV ðqÞ ¼

Z 1

0
dqfVt ðq; k0 ¼ 0Þ

¼ ð�fÞ2
2

þ �2

6
T2: (22)

Finally it follows from Eqs. (19) and (20) that the zero
frequency, zero momentum, vortical conductivity writes

�V
A ¼ 1

8�2
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Tf
Af

�
ð�fÞ2 þ �2

3
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�

¼ 1

16�2

�X
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trðTAfHB;HCgÞ�B�C þ 2�2

3
T2trðTAÞ

�
:

(23)

Both ĜV
A;ð0jÞ and Ĝ

V
A;ðj0Þ lead to the same contribution in�V

A .

Equation (23) constitutes our main result. The term involv-
ing the chemical potentials is induced by the chiral anom-
aly. More interesting is the term�T2 which is proportional

to the gravitational anomaly [8] as we will show in the
discussion section. The Matsubara frequencies ~!n ¼
�Tð2nþ 1Þ generate a dependence on�T in the final result
as compared to the chemical potentials, and then no factors
of � show up for the term �T2 in Eq. (23). Left-handed
fermions contribute in the same way but with a relative
minus sign. Left and right-handed fermions do not mix.
If instead of having taken the zero momentum limit at

zero frequency, one took the zero frequency limit at zero
momentum, the result would be 1=3 of the result quoted in
Eq. (23). The same factor appears in the magnetic con-
ductivity when one interchanges the two limits [5].
Magnetic conductivity.—The magnetic conductivity

in the case of a vector and an axial Uð1Þ symmetry
was computed at weak coupling in [5]. Following the
same method, we have computed it for the unbroken

(non-Abelian) symmetry group Ĝ. The relevant Green
function is

GB
AB ¼ 1

2
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AfT

f
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Z d3q

ð2�Þ3 "ijn

� tr½SffðqÞ�iSffðqþ kÞ�j�: (24)

The evaluation of this expression is exactly as in [5] so we
skip the details. The result is
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4�2
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AgT
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Bf�

f ¼ 1

8�2

X
C

trðTAfTB;HCgÞ�C:

(25)

No contribution proportional to the gravitational anomaly
coefficient is found in this case.
Discussion.—In vacuum the anomaly appears on the

level of three point functions. In the presence of external
sources for the energy momentum tensor and the currents
this is conveniently expressed through [8]

r�J
�
A ¼ "��
�

�
dABC
32�2

FB
��F

C

� þ

bA
768�2

R�
���R

�
�
�

�
:

(26)

The anomaly coefficients are defined by

dABC ¼ 1
2½trðTAfTB; TCgÞR � trðTAfTB; TCgÞL�; (27)

bA ¼ trðTAÞR � trðTAÞL; (28)

where the subscripts R, L stand for the contributions of
right-handed and left-handed fermions.
We have computed the magnetic and vortical conduc-

tivity at weak coupling and we find contributions that are
proportional to the anomaly coefficients (27) and (28).
Nonzero values of these coefficients are a necessary and
sufficient condition for the presence of anomalies [9].
Therefore the nonvanishing values of the transport
coefficients (1) and (2) have to be attributed to the presence
of chiral and gravitational anomalies.
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Since the gravitational anomaly is fourth order in de-
rivatives it is a bit surprising to find it contributing to first
order transport coefficients. One possible intuitive expla-
nation one could think of is that the gravitational field in
the presence of matter gives rise to a fluid velocity u�, e.g.,
through frame dragging effects, and that this might effec-
tively reduce the number of derivatives that enter in the
hydrodynamic expansion.

The holographic calculation in AdS/CFT [6] did not
show a contribution proportional to T2. This is not surpris-
ing since only a holographic gauge Chern-Simons term
was included. Holographic modeling of the gravitational
anomaly calls, however, also for inclusion of a mixed
gauge-gravitational Chern-Simons term of the form
A ^ R ^ R [10].

We find a nonvanishing vortical conductivity propor-
tional to �T2 even in an uncharged fluid. In [11] similar
terms in the vortical conductivities have been argued for as
undetermined integration constants without any relation to
the gravitational anomaly.

It is also interesting to specialize our results to the case
of one vector and one axial current with chemical poten-
tials �R ¼ �þ�A, �L ¼ ���A, charges q

R
V;A ¼ ð1; 1Þ

and qLV;A ¼ ð1;�1Þ for one right-handed and one

left-handed fermion. We find (for a vector magnetic field)

�B
VV ¼ �A

2�2
; �B

AV ¼ �

2�2
; �V

V ¼ ��A

2�2
;

�V
A ¼ �2 þ�2

A

4�2
þ T2

12
:

(29)

Here �B
VV is the chiral magnetic conductivity [5], �B

AV

describes the generation of an axial current due to a vector

magnetic field [12], �V
V is the vector vortical conductivity,

�V
A is the axial vortical conductivity and the only one

sensitive to the gravitational anomaly.
In [13] enhanced production of high spin hadrons (es-

pecially �� baryons) perpendicular to the reaction plane
in heavy ion collisions has been proposed as an observa-
tional signature for the chiral separation effect. Three
sources of chiral separation have been identified: the anom-
aly in vacuum, the magnetic and the vortical conductivities
of the axial current J�A . Of these the contribution of the

vortical effect was judged to be subleading by a relative
factor of 10�4. The T2 term in (29) leads, however, to a
significant enhancement. If we take � to be the baryon
chemical potential� � 10 MeV, neglect�A as in [13] and
take a typical RHIC temperature of T ¼ 350 MeV, we see
that the temperature enhances the axial chiral vortical
conductivity by a factor of the order of 104. We expect
the enhancement at the LHC to be even higher due to the
higher temperature.

Beyond applications to heavy ion collisions leading to
charge and chiral separation effects [13,14] it is tempting to
speculate that the new terms in the chiral vortical conduc-
tivity might play a role in the early Universe. Indeed it has
been suggested before that the gravitational anomaly might
give rise to Lepton number generation, e.g., in [15]. The
lepton number separation due to the gravitational anomaly
could contribute to generate regions with nonvanishing
lepton number.
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