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We introduce a systematic framework to calculate the bipartite entanglement entropy of a spatial

subsystem in a one-dimensional quantum gas which can be mapped into a noninteracting fermion system.

To show the wide range of applicability of the proposed formalism, we use it for the calculation of the

entanglement in the eigenstates of periodic systems, in a gas confined by boundaries or external potentials,

in junctions of quantum wires, and in a time-dependent parabolic potential.
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Entanglement is a fundamental phenomenon of quantum
mechanics. Much theoretical work has focused on the
entanglement properties of quantum many-body systems,
showing their importance to characterize the many-body
dynamics [1]. In particular, lots of studies have been de-
voted to quantify the highly nontrivial connections be-
tween different parts of an extended quantum system, by
computing von Neumann or Rényi entanglement entropies
of the reduced density matrix �A of a subsystem A. The
most remarkable result is the universal behavior at 1D
quantum critical points, determined by the central charge
of the underlying conformal field theory (CFT) [2–5]. For a
partition of an infinite 1D system into a finite piece A of
length ‘ and the remainder, the entanglement entropy for ‘
much larger than the short-distance cutoff a is

S1 � �Tr½�A ln�A� ¼ c

3
ln
‘

a
þOð1Þ; (1)

where c is the central charge. This result has been con-
firmed in many spin chains and in 1D itinerant systems on
the lattice [1]. These studies have allowed a deeper under-
standing of 1D simulation algorithms based on the so-
called matrix product states [6]. However, the same result
must be valid also in systems in continuous space (when
the UV cutoff is properly imposed). Apart from the interest
to describe trapped 1D gases experimentally realized with
cold atoms, the entanglement of continuous models is also
instrumental to develop 1D tensor network algorithms for
gases, as the one proposed in Ref. [7]. Despite this funda-
mental interest, almost no effort (with the exception of
Refs. [8,9] and the orbital partitioning in quantum Hall
states [10]) has been devoted to the spatial entanglement
of gas models (that is distinguished from the particle
partitioning [11]).

In this Letter, we present a systematic framework to
tackle free gases in any external conditions for an arbi-
trarily large number of particles. The most general result of
this investigation is that, when dealing with a finite number
of particles N, the 1D entanglement entropy grows like
lnN, with a prefactor that again is given by the central
charge. In this formulation N acts as an explicit UV cutoff,

representing a concrete alternative to the lattice. While the
lnN behavior could have been predicted also on the basis of
scaling arguments, its validity in many different physical
situations is not obvious a priori. Furthermore, the method
being very general, it allows us to derive exact predictions
that, in some cases, were not known from the lattice and/or
CFT arguments. We apply our framework only to gases of
spinless fermions, but its validity is more general. It is
indeed straightforward to include spin degrees of freedom.
Furthermore, the 1D Bose gas in the limit of strong short-
ranged repulsive interaction (corresponding to a gas of
impenetrable bosons, describing also the dilute limit of
the finite-strength model [12]) can be mapped to spinless
fermions, so that their entanglement entropies coincide.
In the following, we first present the general framework

based on a mapping from a continuous Fredholm determi-
nant into a standard one of dimension N. We then show the
power of the method by applying it to several physical
situations, including wire junctions and nonequilibrium
problems that are not yet solved on the lattice.
The method.—Let us consider a system of N noninter-

acting spinless fermions with discrete one-particle energy
spectrum. As is well known, the many-body wave func-
tions �ðx1; . . . ; xNÞ can be built from the one-particle

eigenstates via �ðx1; . . . ; xNÞ ¼ det½�kðxnÞ�=
ffiffiffiffiffiffi
N!

p
, where

the normalized wave functions �kðxÞ represent the occu-
pied single-particle energy levels. The ground state is
obtained by filling the lowest N energy levels. Thus, the
ground-state two-point correlator reads

C ðx; yÞ � hcyðxÞcðyÞi ¼ XN
k¼1

��
kðxÞ�kðyÞ; (2)

where cðxÞ is the fermionic annihilation operator and the
one-particle eigenfunctions�kðxÞ are ordered according to
their energies.
We want to compute the bipartite entanglement entropy

of a space interval A, extending from x1 to x2, in this
fermion gas. For this purpose, we introduce the Fredholm
determinant

DAð�Þ ¼ det½�I� C�; (3)
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where the continuous matrix C and the identity I are
restricted to the part at hand, i.e., from x1 to x2. Then,
calculations based on the Wick theorem [13], and the
integral representation of Ref. [14] for the Rènyi entangle-
ment entropy, allow us to write

S�ðx1; x2Þ � lnTr��
A

1� �
¼

I d�

2�i
e�ð�Þd lnDAð�Þ

d�
; (4)

where the integration contour encircles the segment ½0; 1�
and

e�ð�Þ ¼ 1

1� �
ln½�� þ ð1� �Þ��: (5)

For � ! 1 it reduces to the von Neumann definition (1).
The integral representation (4) has been already derived
and used in the context of discrete chain models [14], thus
involving the determinant of a standard matrix with the
lattice sites as indices.

The Fredholm determinant is turned into a standard one
by introducing the N � N overlap matrix A (also consid-
ered in Ref. [8]) with elements

A nm ¼
Z x2

x1

dz��
nðzÞ�mðzÞ; n; m ¼ 1; . . . ; N; (6)

such that TrCk ¼ TrAk for any k, and thus

lnDAð�Þ ¼ �X1
k¼1

TrCk

k�k
¼ �X1

k¼1

TrAk

k�k
¼ XN

m¼1

lnð�� amÞ;

(7)

where am are the eigenvalues of A [we use the standard
relation for Fredholm determinants ln det½I� zM� ¼
�P1

k¼1ðzkTrMkÞ=k, and we drop off a term / ln� giving

a vanishing contribution in Eq. (4)]. Inserting it into the
integral (4), we obtain

S�ðx1; x2Þ ¼
I d�

2�i

XN
m¼1

e�ð�Þ
�� am

¼ XN
m¼1

e�ðamÞ; (8)

as a consequence of the residue theorem.
The matrix A is easily obtained for any noninteracting

model from the one-particle wave functions, as the defini-
tion (6) shows. Calculating the entanglement entropies is
then reduced to an N � N eigenvalue problem that can be
easily solved numerically and in some instances even
analytically, as we are going to show. Details of the calcu-
lations will be reported elsewhere.

Ground state of a periodic system.—In a system of
length L with periodic boundary conditions, the one-

particle wave functions are �kðxÞ ¼ e2�ikx=L=
ffiffiffiffi
L

p
with

wave numbers k 2 Z. In the ground state of the fermion
gas, by filling the N k modes with the lowest energies, the
matrix A associated with a segment of length ‘ is

A nm ¼ sin�ðn�mÞX
�ðn�mÞ ; X � ‘=L; (9)

n;m ¼ 1; . . . ; N. By inserting the N eigenvalues of A into
Eq. (8), we obtain the entanglement entropy in a system of

N particles. Furthermore, since lnDA ¼ lndetG, with G �
�I� A an N � N Toeplitz matrix, we can use the Fisher-
Hartwig conjecture [15] to rigorously infer that

S� ¼ 1
6ð1þ ��1Þ lnð2N sin�XÞ þ b� þOðN�2=�Þ; (10)

where b� and the leadingOðN�2=�Þ corrections can also be
computed analytically [16]. Figure 1 shows a comparison
with exact finite-N calculations, for � ¼ 1. Equation (10)
agrees with the CFT prediction for finite systems [4],
obtained from Eq. (1) by replacing ‘ with the chord length
L=� sinð�XÞ. Thus, Eq. (10) represents the first explicit
analytic confirmation of this CFT prediction.
Systems with hard-wall potential.—We now consider a

gas of spinless fermions confined in the interval ½0; L� by a
hard-wall potential (i.e., the gas density vanishes for x =2
½0; L�). We consider a bipartition starting from the bound-
ary, i.e., A ¼ ½0; ‘�, but the general case can also be treated.
Some algebra similar to before leads to

A nm ¼ BnmðXÞ � sin½�ðn�mÞX�
�ðn�mÞ � sin½�ðnþmÞX�

�ðnþmÞ :

(11)

Using a recent generalization of the Fisher-Hartwig con-
jecture to Toeplitzþ Henkel matrices [16,19], we obtain

S� ¼ 1

12
ð1þ ��1Þ lnð4N sin�XÞ þ b�

2
þOðN�1=�Þ:

(12)

A comparison of the finite-N results with Eq. (12) is shown

in Fig. 1. The leading oscillating OðN�1=�Þ corrections

can also be computed. They correspond to the Oð‘�1=�Þ
corrections found within CFT [17,20].
Excited states can be easily treated in this formalism by

summing in Eq. (2) over the occupied one-particle states
representing the excited states. As an example, let us
consider the particle-hole excitation in a periodic system
obtained by moving one particle from the highest occupied
level to the first available one. The corresponding N � N
matrix A has the first n� 1 rows and columns identical to
the ground state and the last different. Note that it ceases to

FIG. 1 (color online). (a) Entanglement entropy S1 for periodic
(uppermost set of data) and Dirichlet (bottom) boundary con-
ditions compared with the asymptotic results for different values
of N (X ¼ ‘=L). (b) The function F2ðXÞ for the finite-size
scaling behavior of the particle-hole excited state vs the CFT
prediction [21].
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be a Toeplitz matrix. In Fig. 1, we compare the scaling
function F2ðXÞ � exp½S2 � 1=4 lnð2N sin�XÞ � b2� for
several values of N with the corresponding CFT prediction
[21] F2ðXÞ ¼ ½7þ cosð2�XÞ�2=64. The CFT curve is
clearly approached in the large-N limit.

Star graphs or wire junctions.—A novel application of
the outlined method consists in determining the entangle-
ment at a junction of quantum wires (also called a star
graph). Networks of quantum wires with junctions recently
attracted a lot of attention [22], mainly because of their
possible applications in nanocircuits. A star graph consists
of M wires joining in a single point (called a vertex). We
consider wires whose bulk is described by noninteracting
spinless fermions. The only interaction is localized at the
vertex, and it is encoded in a M�M scattering matrix S
[22,23], as pictorially shown in Fig. 2. We consider wires
of finite length L with hard-wall boundary conditions at
their ends. Scale-invariant junctions can be constructed
and classified [22,23]: They are either isolated points or
families with free parameters.

Let us first consider the case of two wires, i.e., a gas of
free fermions with a localized impurity at the vertex. The
allowed scale-invariant conditions at the vertex are [23]
the two trivial ones (Dirichlet and Neumann), which dis-
connect the two wires and give no entanglement, and the
one-parameter family described by the scattering matrix

S ð�Þ ¼ 1

1þ �2
�1þ �2 2�

2� 1� �2

� �
: (13)

(A phase can be added, but it does not enter any measurable
quantity and will be omitted.) Note that � ¼ 1 corresponds
to full transmission, i.e., no impurity.

In order to derive the ground-state entanglement entropy
of one wire, we compute the matrix A in Eq. (6) by
diagonalizing the one-particle problem. We obtain

Anm ¼ 2�

1þ �2
Bnmð1=2Þ for n � m;

Ann ¼ 1

1þ �2
for odd n;

Ann ¼ �2

1þ �2
for even n;

(14)

where Bnm is defined in Eq. (11). Then, we determine the
wire entanglement entropy S�ðs;NÞ as a function of the
transmission coefficient

s � 2�

1þ �2
: (15)

We observe a logarithmic growth

S�ðs;NÞ ¼ C�ðsÞ lnN þOð1Þ; (16)

with a prefactor C�ðsÞ that depends on s and not only on the
central charge; see Fig. 2. Assuming universality in terms
of s, we can exploit the results of Ref. [24] for the lattice
Ising and XX models with a defect, to infer

C �ðsÞ ¼ 2

�2ð1� �Þ
Z 1

0
dx ln

�
1þ e�2�!ðsÞ

ð1þ e�2!ðsÞÞ�
�
; (17)

where !ðsÞ ¼ acosh½ðcoshxÞ=s�. The perfect agreement
(see Fig. 2) with the large-N behavior of our numerical
evaluations nicely confirms the universality conjecture.
The case of a general number of wires M can be anal-

ogously treated. After diagonalizing the model [23], we
construct the correlation matrix reduced to one wire a and
then the 2N=M� 2N=M matrix A (for simplicity, we
assume N to be a multiple of M) corresponding to the
same wire. After some algebra we obtain

Anm ¼ �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

a

q
Bnmð1=2Þ for n � m;

Ann ¼ �2
a for even n;

Ann ¼ ð1��2
aÞ for odd n;

(18)

where�2
a ¼ ð1þ SaaÞ=2. Notice thatA has the same form

as that for the two-wire problem [cf. Eq. (14)], which is

recovered setting �a ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
. Thus, using Eq. (16),

we also derive the asymptotic behavior of the entanglement

entropy of any of the M wires given by Eq. (16) with s ¼
2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

a

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2

aa

p
. Note that s2 is the total proba-

bility of a signal to be transmitted from the wire a to all
other wires. C� being a monotonic function of s, the
maximum entanglement entropy is always obtained for
s ¼ 1 (Saa ¼ 0), i.e., in the absence of reflection.
Nonequilibrium evolution.—All results presented so far

concern the eigenstates of free-fermionic Hamiltonians.
However, the method allows us to also obtain numerically
exact and/or analytic computations out of equilibrium.
Indeed, Eq. (2) is valid if we replace the one-particle
eigenfunctions �kðxÞ with appropriate solutions of the
corresponding time-dependent one-particle Schrödinger
equation. As an example that can be treated analytically,
we consider the off-equilibrium quantum dynamics of a
gas in a time-dependent harmonic potential.
Using the method outlined above and the knowledge of

the eigenstates of the harmonic oscillator, one can straight-
forwardly calculate the ground-state (equilibrium) entan-
glement entropy of any spatial subsystem ½x1; x2�. In
particular, the half-space entanglement entropy, i.e., of

FIG. 2 (color online). Left: M wires interacting through the
scattering matrix S. Right: Entanglement entropy S1 for a
junction of two wires and for different values of the transmission
coefficient s. The full lines correspond to the asymptotic behav-
ior (16) with C1ðsÞ given by the limit � ! 1 of Eq. (17).
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½�1; 0�, behaves as S�ð�1;0Þ¼ 1
12ð1þ��1ÞlnNþe�þ

OðN�ð1=�ÞÞ, which can be analytically obtained, including
the constant e�, by developing the results of Ref. [25]. In
the presence of a time-dependent potential VðxÞ ¼
1
2�ðtÞx2, and starting from the ground state for a given �0 ¼
�ðt ¼ 0Þ, we can exploit the solution of the one-particle
problem [26,27] to infer that the time-dependent entangle-
ment entropy behaves as

S�ðx1; x2; tÞ ¼ S�ðx1=sðtÞ; x2=sðtÞ; 0Þ; (19)

where sðtÞ is an analytical function of the time-dependent
potential with sð0Þ ¼ 1. This shows the remarkable prop-
erty that the evolution in a harmonic potential simply
corresponds to a global rescaling of the system size. In
the case of a quantum quench with an instantaneous re-
moval of the harmonic potential of frequency

ffiffiffiffiffiffi
�0

p
, we have

sðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �0t

2
p

. Then, for t ! 1, sðtÞ diverges and the
entanglement of any finite interval vanishes in the long
time limit, while the entanglement of any semi-infinite
piece ½�1; x� tends asymptotically to S�ð�1; 0; 0Þ.

Other nonequilibrium situations such as local quantum
quenches in junctions of quantum wires (e.g., instantane-
ously turning on or off the point contact at the vertex) can
also be tackled within this framework. They may provide
important insights in view of the recent proposals of using
the full counting statistics after a quench as an experimen-
tal probe and a measure of entanglement [28].

Discussions.—In this Letter, we have introduced a gen-
eral framework to calculate the entanglement entropy of
gases that have a representation in terms of free fermions.
The asymptotic entanglement entropy grows like lnN, with
a prefactor that is given by the central charge and that (in
known cases) agrees with universal predictions. The UV
regularization given by the number of particles N is alter-
native to the lattice spacing, and, for the description of
gases, it has an immediate physical interpretation.
Moreover, the formulas of the universal features of the
entanglement are easier to handle in the continuum at finite
N than on the lattice.

We conclude by mentioning some possible extensions of
this work beyond the straightforward (but still interesting)
applications to other 1D free gases. Motivated by recent
experiments in cold atoms, it is interesting to consider 1D
gases in an external random potential that, in the case of a
perfect gas, can be treated with our method. All the results
we have presented are in 1D, but the application of the
method to higher dimensions is straightforward.
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