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Quantum-state reconstruction on a finite number of copies of a quantum system with informationally

incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme

where both the likelihood and the von Neumann entropy functionals are maximized in order to

systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator,

consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial

knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such

estimators will also be explored.
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The acquisition of information about a given ensemble
composed of many copies of a quantum system, which is
used to identify its quantum state, for instance, always
depends on the way the measurements are performed.
Such a protocol of probing the ensemble is known as
quantum tomography. Since our measurement resources
are always limited, the information is never complete, and
the inference of the nature of this ensemble from the
measurement data needs to account for the fact that some
aspects of the ensemble are fully characterized while
others are not.

This is especially the case if the ensemble to be charac-
terized is complex and no feasible set of informationally
complete measurements is available. In this case, some
aspects of the quantum ensemble are not measured, and
reconstructions of its properties are not unique. For ex-
ample, the true quantum state of a mode of light made up of
an ensemble of photons can be described by a statistical
operator �true residing in an infinite-dimensional Hilbert
space, and, no matter how ingeniously a measurement
scheme is designed to probe this ensemble, an infinite
amount of information about it will always remain
unknown.

The standard approach to this problem is to apply an
ad hoc truncation on the Hilbert space and perform the
state reconstruction in a particular subspace. This results in
a smaller number of unknown parameters that can then be
uniquely determined by the measurement scheme. Since
the truncation is largely based on the experimentalist’s
intuition about the expected result, that is, the true state
that describes an ensemble of infinitely many copies of
such quantum systems, this cannot be an objective method
[1]. A more objective alternative is to consider the largest
possible reconstruction subspace which is compatible with
any existing prior knowledge about the ensemble. For
example, if an experimentalist has prior knowledge of the

range of the energy spectrum of a particular quantum
ensemble, he should consider the largest possible recon-
struction subspace that contains quantum states describing
the ensemble in this range of energies. This inevitably
introduces more unknown parameters which cannot be
uniquely determined by the measurements, and we should
select the state estimator in this subspace that is least
biased. In this Letter, we show how to carry out this
procedure by using two celebrated principles—maximum
likelihood (ML) [2,3] and maximum entropy (ME) [4].
They will be utilized concurrently to yield a unique and
objective state reconstruction scheme, the maximum like-
lihood–maximum entropy reconstruction scheme (MLME),
a synthesis of knowledge and ignorance. This scheme will
be applicable for any general set of quantum measure-
ments, in particular, for those which are noncommuting.
By maximizing the likelihood, information is extracted

from the measured data (knowledge) in an optimal way [3],
and an estimator for the true state describing a given
ensemble of quantum systems can be reconstructed.
However, due to the informational incompleteness of the
set of measurements, there exists in general a convex set of
estimators which are all maximally likely. We shall select
from this set the estimator with the largest entropy, which
represents the least-bias guess of the true state consistent
with the measurement data. As both the entropy and like-
lihood functionals are convex, our proposed reconstruction
scheme will guarantee a unique solution even for informa-
tionally incomplete measurement schemes. This recon-
struction procedure minimizes the spurious details
coming from the parameters which are not uniquely deter-
mined by the measurements.
Given a source that produces identical copies of quantum

systems, each in the state described by the statistical op-
erator �true, one can perform measurements on N such
copies. These measurement outcomes are described by a
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set of positive operators �j that compose a probability

operator measurement (POM), with j running over all out-
comes, and a list of outcome occurrences nj,

P
jnj ¼ N,

or correspondingly the measured frequencies fj ¼ nj
N , is the

raw data obtained from these measurements. Throughout
this analysis, we shall assume that the measurements are
perfect in the sense of

P
j�j ¼ 1. The next step is to infer

the unknown state �true from the measurement data. For
this, we look for estimators—the ML estimators—which
maximize the likelihood functional defined as

L ð�Þ ¼
�Y

j

p
fj
j

�
N
; (1)

with pj ¼ trf��jg. Using this method, one can always

obtain positive estimators suitable for statistical
predictions [5].

A POM is informationally complete if the mapping of
statistical operators � on the probabilities pj is injective.

This results in a unique operator �̂ML � 0 that maximizes
Lð�Þ, where a hat is used to denote an estimator. We shall
focus on the case in which the POM is not informationally
complete. This means that there is a convex set of esti-
mators that maximize Lð�Þ for a given set of fj’s. The

next task is now to choose the one (the MLME estimator)
which maximizes the von Neumann entropy [6] Sð�Þ ¼
�trf� log�g over the set of ML estimators. It is well known
that the ME estimator is of the form

�̂ME ¼ e
P

j
�j�j

trfe
P

j
�j�jg

(2)

with real �j’s. Note that our proposed strategy is funda-

mentally different from the standard ME scheme. The
latter involves searching for the ME estimator �̂ME which
produces the measured frequencies of POM outcomes or
moments of a particular observable and maximizing its
entropy subjected to these linear constraints [7,8]. Since
these constraints can become incompatible with one an-
other due to the presence of statistical noise, this procedure
may fail because there simply is no ME estimator.

In our current strategy, instead of taking the data as strict
linear constraints, information is extracted from the data
via the nonlinear ML technique and mapped onto the
convex subset of quantum states constituting the plateau
of the likelihood functional. Thereafter, the entropy is
maximized to yield a unique unbiased estimator.
Conceptually, this can be turned into a convex optimization
problem of maximizing the objective functional

I ð�;�Þ ¼ �Sð�Þ þ 1

N
logLð�Þ; � � 0; (3)

which involves a single parameter � as a weight on Sð�Þ.
This Ið�;�Þ is the amalgam of two separate measures
of information and so reflects the joint consideration of
knowledge and ignorance. In fact, we note that, up to
an irrelevant additive constant, Ið�;�Þ is a weighted sum
of two entropies: Sð�Þ, which quantifies the ‘‘lack of

information,’’ and the negative of Sðffjg j fpjgÞ ¼P
jfj logðfj=pjÞ (relative entropy), which quantifies the

‘‘gain of information’’ from the measurements. Hence,
Eq. (3) is indeed a natural combination of two comple-
mentary aspects of information.
Since �Lð�Þ=�� ¼ 0 due to the constraint of maximal

likelihood, varying Ið�;�Þ with respect to � for fixed �
gives

�Ið�;�Þ
��

¼ �
�Sð�Þ
��

: (4)

In order to maximize Ið�;�Þ, we need the derivative to be
zero, and this is obtained only when � ! 0. In other words,
in order to search for the MLME estimator via Eq. (3), it is
necessary to take both our knowledge and ignorance of the
unknown true state into consideration in such a way that
our ignorance takes an infinitesimal weight. Geometrically,
the log-likelihood functional is much larger than the en-
tropy functional in this limit, and, since the log-likelihood
functional has a plateau corresponding to the convex set of
most-likely estimators, a tiny admixture of the entropy
functional introduces a gentle convex hill top within the
plateau to select the maximum entropy estimator.
By parameterizing a given statistical operator � as � ¼

AyA=trfAyAg to ensure positivity, one can invoke the
method of steepest ascent and derive an iterative routine
for MLME. Here, we simply mention that one can start
from the maximally mixed state and iterate the equations

�kþ1 ¼ ð1þ �TkÞ�kð1þ �TkÞ
trfð1þ �TkÞ�kð1þ �TkÞg ; (5)

Tk ¼ Rk � 1� �ðlog�k � trf�k log�kgÞ (6)

with a step size � and Rk ¼
P

jðfj=pðkÞ
j Þ�j, until the ex-

tremal equations Tk0�k0 ¼ �k0Tk0 ¼ 0 are satisfied for a
particular k ¼ k0 with some numerical precision. We de-
note this operator as the MLME estimator �̂MLME � �k0 . If
� ¼ 0, we recover the ML iterative scheme [5].
We compare the MLME scheme with the standard ME

scheme by using the simple example of a trine POM
defined by the three outcomes �0 ¼ ð1þ �zÞ=3 and

�� ¼ ð1� ffiffiffi
3

p
�x=2� �z=2Þ=3, where �x and �z are

standard Pauli operators. A straightforward calculation
shows that when n0 ¼ 6, nþ ¼ 2, and n� ¼ 1 after mea-
suringN ¼ 9 copies, for instance, the standard ME scheme
fails, as no quantum state has the frequencies f0 ¼ 2=3,
fþ ¼ 2=9, and f� ¼ 1=9 as probabilities. On the other
hand, the MLME scheme still gives a positive estimator
described by the Bloch vector ð0:194; 0; 0:981Þ for those
frequencies, thus showing its versatility. Only when the
frequencies are probabilities giving positive estimators
may we use the ME scheme, and, in this case, the
MLME scheme naturally incorporates these constraints.
To discuss the method of choosing �, we shall apply the

MLME scheme to homodyne tomography, a technique
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which is used to reconstruct quantum states of light [9].
This is typically done by measuring a POM which resem-
bles a set of eigenstate projectors jx#ihx#j of quadrature
operators X cos# þ P sin# for various # values, where X
and P are, respectively, the position and momentum quad-
rature operators and x and # are parameters specifying
these projectors. It is clear that a finite set of such mea-
surements is never informationally complete in the infinite-
dimensional Hilbert space, and thus the MLME scheme is
necessary to obtain a unique estimator. Figure 1 shows the
dependence of logðLð�̂ÞÞ=N and Sð�̂Þ on � such that
�Ið� ! 0; �̂Þ ¼ 0. In practice, � can be chosen from a
range near zero, within which logðLð�̂ÞÞ=N and Sð�̂Þ
remain almost constant.

Homodyne tomography is commonly used not only in
quantum tomography on the true state but also in quantum
diagnostics where a given true state is to be classified
as being classical-nonclassical or separable-entangled. A
typical quantity which is often investigated as an indication
of whether an unknown true state is nonclassical is the
value of the Wigner functional at the phase space origin
evaluated with a reconstructed estimator �̂ for the un-
known true state. This is defined as W00 ¼ 2 trf�̂P g, with
P ¼ R

dxjx#ih�x#j for any #. In particular, a negative
value for W00 implies that �̂ is a nonclassical state. To
obtain an estimator �̂, one would need to choose a sub-
space from the infinite-dimensional Hilbert space in which
the reconstruction procedure is tractable. This means that
the value of W00 will depend on this truncation, which in
turn relies on the prior knowledge one has about the true

state. Using our scheme, we perform a simulation, shown
in Fig. 2, to illustrate this dependence.
If the true state lies outside the subspace of interest, then

the estimated value ofW00 can drastically deviate from the
true value. It is clear that a truncation of the Hilbert space
into a smaller reconstruction subspace can lead to diag-
nostics which are highly incompatible with the true result.
So, if one is interested in performing an objective quantum
tomography experiment on a given ensemble of quantum
systems with some prior knowledge regarding its true state,
an option would be to reconstruct the MLME estimator in
the largest possible subspace based on this prior knowl-
edge. By enlarging the reconstruction subspace, many
more admissible states are taken into consideration, and
more reliable state estimations and quantum diagnostics
can thus be performed. We now have an operational re-
construction scheme that combines our knowledge and
ignorance about the unknown true state to give us a unique
state estimator in an objective way.
There exists an interesting structure in these MLME

estimators, and, to explore it, one needs some knowledge
on the structure of the POM used and its influence on
the D-dimensional Hilbert space. Suppose the set of K
POM elements �j are informationally incomplete. A

consequence of this is that the number of linearly indepen-
dent �j’s is less than D2. To determine their linear
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FIG. 1. A simulation on quantum tomography on a randomly
generated mixed state of light in the five-dimensional Fock
space. In this plot, the number of copies of quantum systems
measured is fixed at N ¼ 104. A choice of 20 quadrature
eigenstates made up of four different # settings, with five x
values corresponding to each setting, which are projected onto
this space was used, and state estimators are constructed for
different values of �. As � decreases, both the entropy and
likelihood functionals approach their respective optimal values
obtained from MLME (i.e., when � ! 0). When � is zero, there
is a convex set of estimators giving the optimal likelihood value.
For very large � values, the estimators approach the maximally
mixed state, and hence Sð�Þ approaches the maximal value log 5.
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FIG. 2. A simulation on quantum tomography on a randomly
generated mixed state �true of light in the 20-dimensional Fock
space with a slightly positive W00 ¼ 0:141. �Dtr and �W00, re-
spectively, denote the trace-class distance between the recon-
structed estimator and the true state and the Wigner function at
the phase space origin, both averaged over 50 experiments with
N ¼ 104. The same set of 20 quadrature eigenstates as in Fig. 1,
projected onto this space, was used, and this set of measurements
is informationally complete in the two-, three-, and four-
dimensional Fock subspaces (shaded region). The values �W00

and �Dtr were obtained by ML [9] in subspaces of dimensions two
to four and by the MLME scheme in dimensions greater than
four. The plot shows a strong dependence of �W00 and �Dtr on the
subspace dimension. In this case, it is obvious that the negativity
of �W00 inferred by a reconstruction in a subspace too small is just
an artifact of the truncations. Also, �Dtr decreases as the recon-
struction subspace increases in dimension. This demonstrates the
advantages of the MLME scheme over the ML method.
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independence, we can look for the eigenvalues of the
K � K GrammatrixM with the matrix elements defined as

Mjk ¼ trf�j�kg: (7)

The number of positive eigenvalues n>0 � D2 of M de-
termines the number of linearly independent measurement
outcomes. The largest value of n>0 is D

2, since this is the
maximum number of linearly independent operators span-
ning the space of Hermitian operators as a basis. Hence a
set of informationally incomplete �j’s acting on the

D-dimensional Hilbert space is such that n>0 <D2.
AnyD-dimensional positive operator can be represented

by a set of D2 Hermitian basis operators �j ¼ �y
j satisfy-

ing the trace-orthonormality condition trf�j�kg ¼ �jk. For

dimension two, an example of such a basis is the familiar

set of four operators 1=
ffiffiffi
2

p
, �x=

ffiffiffi
2

p
, �y=

ffiffiffi
2

p
, and �z=

ffiffiffi
2

p
.

Once the number of independent measurement outcomes
n>0 is known, one can construct a set f�jgn>0

j¼1 of n>0 trace-

orthonormal Hermitian basis operators directly from the K
POM elements. In other words, each of the K POM
elements can be expressed as a linear combination of the
n>0 basis operators

�j ¼
Xn>0

k¼1

ajk�k; (8)

where all coefficients ajk are real. This implies that the

n>0-dimensional subspace is spanned by the basis opera-
tors that uniquely specify the POM outcomes. We will coin
this subspace the measurement subspace. The rest of the
D2 � n>0 Hermitian basis operators, which are trace-
orthonormal to the previous set and span the subspace
that is the complement to the measurement subspace, can
also be constructed.

Suppose a state estimator �̂ML is generated by using the
ML procedure on a set of measurement data obtained from
the POM outcomes�j. We can represent this estimator by

a set of Hermitian trace-orthonormal basis operators inas-
much as

�̂ML ¼ Xn>0

k¼1

cML
k �k

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�~�ML

þ XD2

k¼n>0þ1

cME
k �k

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�~�ME

: (9)

The part ~�ML resides in the measurement subspace, which
is spanned by the measurement outcomes �j giving the

measurement data, and is uniquely fixed for all ML esti-
mators by the ML procedure for the same set of measure-
ment data. The part ~�ME resides in the complementary
subspace, which is orthogonal to the measurement sub-
space, and thus does not contribute to the pj’s. In other

words, trf~�ME�jg ¼ 0, and this can imply the existence of

a family of ~�ME’s that gives the same set of ML proba-
bilities as long as the �̂ML’s are positive.

Therefore, the MLME scheme can be understood as an
optimization over the complementary subspace to max-
imize Sð�Þ under the constraint �̂MLME � 0. However,
one notes that only certain sets of cME

j ’s are allowed during

the optimization due to this positivity constraint. This is
especially important when �̂MLME is rank deficient and lies
on the boundary of the state space. Geometrically, the
plateau of most-likely states is generally a much smaller
subspace contained in the complementary subspace. In
some cases, this plateau contains a single ML estimator
due to the positivity constraint even when the measure-
ments are informationally incomplete. In general, the
boundary of the plateau is complicated and deserves
further study.
In summary, we have developed a state reconstruction

scheme which is applicable to any set of measurements,
particularly those which are informationally incomplete, as
in homodyne tomography, for instance. We emphasize that,
in order to carry out least-bias state reconstructions and
quantum diagnostics on an ensemble of quantum systems,
a good way is to do this over a large subspace of states
compatible with some prior knowledge on the ensemble in
order to avoid inaccurate results, which can have detrimen-
tal effects on statistical predictions. We then explored the
geometrical structure of the state estimators obtained from
this scheme and gave an alternative understanding to the
state reconstruction procedure.
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