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We consider magnetotransport properties in a conducting chiral helimagnet, where the magnetic kink

crystal (MKC) is formed under weak magnetic field applied perpendicular to the helical axis. The MKC

behaves as a magnetic superlattice potential and results in Bragg scattering of conduction electrons.

Tuning of the weak magnetic field enables us to control the size of the superlattice Brillouin zone and

gives rise to a series of divergent resistivity anomalies originating from resonant Bragg scatterings. We

discuss as well a nontrivial magnetic structure in the resonant states realized in the subsystem of the

itinerant electrons.
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A coupling of free electrons with nontrivial spin textures
has recently attracted a great deal of attention because of an
ability to manipulate magnetotransport properties through
control of the background spin subsystem. The central
issues there include the current-driven motion of the mag-
netic domain wall (DW) and vortices [1], electromotive
force generation [2], or magnetoresistance phenomena [3].
To explain the resistance change when the current flows
through the magnetic texture, several theoretical ideas have
been proposed: mixing of spin states due to the background
magnetic texture [4], destruction of the weak localization
by the DW [5], spin accumulation around the DW [6],
appearance of the texture-dependent resistivity tensor due
to dissipative spin-motive force generated by magnetiza-
tion dynamics [7]. It is, however, still under debate whether
the domain wall resistivity is positive or negative [8].

The aim of this Letter is to address a complementary
mechanism of magnetoresistance for electrons traveling
through a magnetic superlattice structure stabilized in a
chiral helimagnet. In chiral helimagnet, the left- or right-
handed helical spin texture along the crystallographic axis
is stabilized by a competition between symmetric J and
antisymmetric Dzyaloshinkii-Moriya (DM) exchange in-
teractions [9,10] specified by the DM vector D ¼ Dêz
along the helical axis. The helical pitch, L0 ¼ 2�=Q0, is
fixed by Q0 ¼ a�1

0 tan�1ðD=JÞ. a0 is the lattice unit of the
constituent crystallographic cubic lattice.

Under a weak magnetic field applied perpendicular to

the helical axis, ~H ¼ 2�BHêx (�B is the Bohr magneton
and H is a strength of the field), the ground state forms
a magnetic superlattice called a magnetic kink crystal
(MKC) or sometimes referred to as a chiral soliton lattice
[11,12] as shown in Fig. 1(a). Previously, we have studied
magnetic current carried by a sliding motion of the MKC
[13], a novel spin resonance associated with the MKC
elementary excitations [14], and a current-driven sliding

motion of the MKC [15]. The MKC state is described by
the semiclassical spin vector, Si ¼ SnðziÞ ¼ Sð cos’ðziÞ;
sin’ðziÞ; 0Þ with the winding angle being given by
cosð’ðzÞ=2Þ ¼ snð2Kz=LMKCÞ. Here, sn is the Jacobi el-
liptic function with the elliptic modulus � (0 � � < 1), K
and E are the complete elliptic integrals of the first and
second kind. The spatial period of the MKC superlattice
is given by LMKC ¼ 8KE=ð�Q0Þ which continuously in-
creases from L0 to infinity when the magnetic field
increases from zero to the critical strength ~Hc ¼
ð�Q0a0=4Þ2JS�D2=J. In practice, the critical field is of
the order of 100–1000 G [16]. The elliptic modulus � is
determined from the condition of the minimal energy per
the period ~H= ~Hc ¼ ð�=EÞ2.
Now, let us consider a conducting chiral helimagnet,

where free electrons with the hopping integral t are
coupled with the background MKC texture via the sd-
type interaction of the strength Jsd. A possible experimen-
tal candidate of such a system is currently available,
Cr1=3NbS2 [17]. To be more precise, we specify a hierarchy

of the relevant energy scales for the itinerant electron
subsystem as ~Hc � Jsd � t. The condition enables us to
neglect an orbital bending and a Zeeman coupling of the
conduction electrons due to the external magnetic field. As
a consequence, relevant magnetic effects discussed below
originate from the sd coupling and an inner gauge field of
order t, as discussed below. Under these assumptions, the
itinerant electrons feel periodic potentials associated with
both the host atomic lattice and the magnetic superlattice
formed by the MKC state. Therefore, there are two inde-
pendent reciprocal lattice scales associated with atomic
lattice, G0 ¼ 2�=a0, and the MKC superlattice,

GMKC ¼ 2�=LMKC: (1)

Since a0 � 2�=Q0 � LMKC one sees that GMKC � G0

and the superlattice Brillouin zone (BZ) is much narrower
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than the atomic BZ. We here emphasize that the size of the
superlattice can be controlled by the magnetic field. Then,
a natural question arises whether the magnetic superlattice
BZ affects electron conduction, or, to be precise, is whether
a band insulator state emerges due to umklapp scattering
related withGMKC. In this Letter, we present a study of this
issue.

In what follows, we assume that an electric field is
applied along the helical axis, and dc electric current flows
along the same direction. Being the MKC state given as a
rigid background superlattice, we take the Hamiltonian
for electrons interacting with the superlattice via the
sd interaction in the form H ¼ H el þH sd, where the
free electron part is

H el ¼ �t
X

hi;ji;�
ĉyi;�ĉj;� ��

X
i;�

ĉyi�ĉi�: (2)

Here, i and j are the nearest neighbor sites, ĉyi;�ðĉi;�Þ
represents a creation (annihilation) operator for the elec-
tron with spin projection � at the ith site, and � is the
chemical potential. The sd term is

H sd ¼ �Jsd
X
i

Si � ŝi; (3)

where ŝi ¼ ð1=2Þĉyi����ĉi� represents quantum spin 1=2,

� are the Pauli’s matrices. In the representation, the
electron spin quantization axis coincides with the crystallo-
graphic z axis.

The next step is to decompose a process embedded in
H into diagonalized quasiparticle and scattering counter-
parts. For this purpose, we rotate the spin quantization
axis to the direction of the local spin Si by using the local

SU(2) gauge transformation, ĉi ¼ Ûib̂i, where Ûi ¼
exp½i2�ðziÞ � ��. The rotation vector is given by �ðzÞ ¼
�
2 ð�sin’ðzÞ; cos’ðzÞ; 0Þ. The geometrical picture is as

follows. The vector �ðzÞ points to the direction of êz �
nðzÞ. Then, �=2 rotation around �̂ makes the local quan-
tization axis parallel to the direction of nðzÞ. Consequently,
the crystal frame xyz is transformed into the local frame

�x �y �z , where the sd term is diagonalized as Si � ŝi ¼
ðS=2Þb̂yi �zb̂i. The cost of diagonalizing the sd term is
the appearance of the gauge field coming from the

hopping term, �tĉyi;�ĉiþ1;�¼�tb̂yi Û
y
i Ûiþ1b̂iþ1, where

b̂yi ¼ ðb̂yi"; b̂yi#Þ. Because we consider the slowly varying

spin texture, the gradient expansion with respect to

small a0@z’ðzÞ is legitimate. Then, we have Ûy
i Ûiþ1 ’

1þ a0Û
y@zÛ ¼ 1þ iAðziÞ � �, where the gauge field is

introduced by

A ðzÞ ¼ a0
2
@z’ðzÞð� cos’ðzÞ;� sin’ðzÞ; 1Þ; (4)

which has a period LMKC.
Consequently, the Hamiltonian is reorganized as

H ¼ H el þH sd ¼ H QP þH scatt. The quasiparticle

term is given in the Fourier transformed form as

H QP ¼ P
k;�"k;�b̂

y
k;�b̂�;� with the spectrum being given

by "k;� ¼ �2t cosðka0Þ ��� hsd�, where the effective

field (‘‘sd field’’) hsd ¼ SJsd=2 acts on the quasiparticles.
The � ¼ �1 represents the projection of spin on
the local quantization axis. The gauge field term gives

rise to the scattering term given by H scatt ¼
�it

P
ib̂

y
i ½AðziÞ � ��b̂iþ1 þ c:c: In Fig. 1(b), we depict

the coupling of the free electrons with the diagonalized
sd-field part Hsd, and the nondiagonalized gauge field
potential in the local frame �x �y z. The sd field causes the
band splitting into the spin up and down bands, as shown in
Fig. 1(c).
By introducing the Fourier transform, Aq ¼

L�1
P

ie
�iqziAðziÞ, where L is a linear size of the system,

the scattering term takes the form

H scatt¼2t
X
k;q

e�iqa0=2 sinðka0Þb̂ykþq=2ðAq ��Þb̂k�q=2; (5)

which fully describes the scattering processes of the
quasiparticles.
From A � � ¼ ðAþ�� þ A��þÞ=2þ A3�3 with A� ¼

A1 � iA2 it follows that the gauge field acts as a periodic
vector potential that provides both spin-conserving (A3)
and spin-flipping (A�) scatterings of electrons. As a con-
sequence, the scattering term (5) causes an elastic umklapp
scattering process with a series of special wave numbers

q ¼ qn ¼ nGMKC; (6)

(n is a nonzero integer) under the condition of energy
conservation,

FIG. 1 (color online). (a) Magnetic kink crystal (MKC) state
coupled with itinerant spins via the sd coupling. The magnetic
field strength must satisfy the weak field condition (!c�el � 1),
where !c is the cyclotron resonance frequency and �el is the
Boltzmann relaxation time of the conduction electrons. (b) A
coupling of the itinerant spins with the MKC state and the gauge
field. (c) Spin-polarized subbands of the free quasiparticles.
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"k�qn=2;� ¼ "kþqn=2;�
0 : (7)

The requirement condition is satisfied for special k ¼ kn
for a given n. In the spin-conserved scattering (� ¼ �0),
the energy conservation is satisfied for only kn ¼ 0 and the
scattering term turns into zero [ sinðkaÞ ¼ 0 in Eq. (5)] and
has no effect on the quasiparticle spectrum.

The spin-flipping parts come from A�
q ¼P1

n¼�1 A�
n �q;nG, where the nth order reflection intensity

is given by

A�
n ¼ 	2�

n2e	n	

sinhð2n	Þ : (8)

Here, � ¼ ð�=�KÞ2GMKCa0=2 and 	 ¼ �K0=K. In the
scheme of the reduced zone determined with respect to
the superlattice BZ, ½�GMKC=2; GMKC=2�, the condition
given by Eq. (7) gives crossing points of the spin up and
down bands. Then, it is expected that the umklapp scatter-
ing given by Eq. (5) lifts the accidental degeneracy and a
resultant gap is formed due to Bragg reflection. A control
of the GMKC by a varying magnetic field enables to adjust
the Fermi level to this gap region and move from metal to
band insulator state.

In the reduced zone scheme, the gap at the crossing
points �kn þ nGMKC=2 is ��

n ¼ 4tjA�
n sinðknaÞj. On the

other hand, the gap at the crossing points kn � nGMKC=2 is
�þ

n ¼ 4tjAþ
n sinðknaÞj. This means that ��

n � �þ
n [see

Fig. 2(a)]. This unusual asymmetry in the gap magnitudes
is a direct consequence of chirality. That is to say, GMKC

and �GMKC are interchanged when we make change D
to �D. So, the direction of D directly comes up in the
quasiparticle spectrum via the sd coupling. Note an anal-
ogy with an asymmetry of electron spectrum in materials
with a toroidal state [18].

What is further interesting is an appearance of an oscil-
lating spin structure in the electron subsystem for this band
insulator state. Indeed, the crossing point in the reduced
zone scheme corresponds to the states jk� nGMKC=2; "i
and jkþ nGMKC=2; #i in the extended scheme, which are
evenly mixed by the Bragg reflection to give a new spin

state, j’;�i ¼ ð�e�inGMKCðz�aÞ=2jk; "i þ einGMKCz=2jk; #iÞ=ffiffiffi
2

p
. By taking the expectation value of s �x ¼ ðj "ih# jþ

j #ih" jÞ=2 and s �y ¼ �iðj "ih# j � j #ih" jÞ=2, we have the
spin density h’;�js �xj’;�i ¼ � cos½nGMKCðz� a=2Þ�
and h’;�js �yj’;�i ¼ � sin½nGMKCðz� a=2Þ�. It is noted
that this oscillating spin density wave is represented
in the local frame corotating with the local spins.
Therefore, in the crystal frame, this planar structure is
further twisted in accordance with the MKC texture.
This case of the primary reflection n ¼ 1 is depicted in
Figs. 2(b) and 2(c).

To confirm qualitative arguments given above, we
present a microscopic calculation of resistivity under a
steady current flowing state. For this purpose, we follow
Zubarev’s nonequilibrium density operator method,
where a ‘‘dynamical molecular field,’’ or else a response

parameter, originating from a nonequilibrium background
is introduced to determine a new density operator [19]. The
field is conjugated to a basic dynamical variable, which is a
main feature of the nonequilibrium state. In our treatment,
this dynamical background is the dc current flowing state,

and the current-density operator, J ¼ �e
P

k;�vkb
y
k�bk�,

constitutes the basic dynamical variable. Here, e > 0 is the
elementary charge and vk ¼ @

�1@"k;�=@k is the group

velocity of the conduction electrons.
Using the approach, we extract the magnetic field

dependence of the dc resistivity in the following form


ðHÞ=
max ¼ N ðHÞ=N max; (9)

where N ðHÞ ¼ lim!!0h _J ; _J i!þi", 
max and N max

are maximal values. The correlation function is defined

by h _J ; _J i!þi" ¼
R1
0 dtei!t�"t

R
1
0 dxh _J ðtÞ; _J ði�@xÞieq.

Here, the average h� � �ieq 
 Trf
eq � � �g, where 
eq ¼
expð��H QPÞ=Trfexpð��H QPÞg is the equilibrium

density operator, and � ¼ 1=ðkBTÞ. In contrast to Kubo’s
formula for a linear response of an isolated system,
Eq. (9) gives a response of an open system that in contact
with a heat bath.

The time derivative, _J ¼ i@�1½H ;J �, is computed
through the full Hamiltonian and reads as

_J ¼ 2iet@�1
X
k;q

ðvkþq=2 � vk�q=2Þe�iqa0=2

� sinðka0Þb̂ykþq=2ðAq � �Þb̂k�q=2: (10)

After lengthy but straightforward computation, we obtain

N ðHÞ ¼ X
k;n

�n½vkðvkþnGMKC=2 � vk�nGMKC=2Þ�2

� fkþnGMKC=2;"ð1� fkþnGMKC=2;"Þ
� �ð"kþnGMKC=2;" � "k�nGMKC=2;#Þ; (11)

where f is the Fermi-Dirac distribution function and n runs
over nonzero integers. The total spin-flipping strength is
given by

�n ¼ 2�@e2
�
�n

K�

�
4
G2

MKC

e2�nK
0=K

sinh2ð2�nK0=KÞ : (12)

FIG. 2 (color online). (a) The gap opening at the crossing
points of spin up and down bands. Spatial structures of the
itinerant spins in the insulating state due to the primary reflection
n ¼ 1 are depicted in the local frame (b) corotating with the
local spins and the crystal frame (c).
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In Fig. 3 the resonant zero-temperature resistivity is
presented. In this case the peaks of the nth order intensities
�ncos

2½kF"ðncÞ � jnjGMKCðHnÞ=2� are observed at the

magnetic fields Hn determined from the condition
sinðkF"ðncÞ � jnjGMKC=2Þ sinðjnjGMKC=2Þ ¼ hsd=ð2tÞ,
where kF"ðncÞ is Fermi momentum at given electron con-

centration per site, 0< nc < 2. At the resonance value Hn,
the superlattice BZ is n-fold reduced as compared with the

n ¼ 1 case, Gð1Þ
MKC, and the n-order points of an accidental

Kramers degeneracy in the electron spectrum pass succes-
sively through the Fermi level. It is to be noted that in the
phenomenological picture given in Fig. 2(a), degeneracy at
the band crossing is lifted in a nonperturbative manner.
Consequently, it is expected that the effective mass diverges
at the top and the bottom of the bands. However, in the
microscopic approach presented here, the degeneracy is not
lifted and the degenerate perturbation gives the divergent
mass at the crossing points. This is the reason why we have
delta-function-like spikes of the resistivity in Fig. 3.

Finally, we discuss previous studies relevant to the
present theory. The case of DW scattering was discussed
in Ref. [20], where a gauge field created by local spins is a
source of electron scattering. It is noted that their analysis is
justified in a clean limit, or in a ballistic regime of electron
transport. This issue has been previously addressed in
Refs. [21] for a DW problem. However, in contrast to
spatially localized domain walls, a resistivity due to
Bragg scattering is a bulk effect. More importantly, the
size of the superlattice is tunable by the magnetic field.
We stress as well that an appearance of spin density wave in
the electron subsystem for the band insulating state resem-
bles an effect of spin accumulation due to a domain wall
considered in Refs. [6]. This is, however, a secondary effect
of the Bragg scattering, and not an independent source of
the voltage drop as it has been postulated by Šimánek.
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