
Effect of Trapped Energetic Particles on the Resistive Wall Mode

G. Z. Hao,1 A.K. Wang,1 Y.Q. Liu,2,* and X.M. Qiu1

1Southwestern Institute of Physics, Post Office Box 432, Chengdu 610041, China
2Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

(Received 6 January 2011; published 1 July 2011)

A stability analysis for the resistive wall mode is studied in the presence of trapped energetic particles

(EPs). When the EPs’ beta exceeds a critical value, a fishbonelike bursting mode (FLM) with an external

kink eigenstructure can exist. This offers the first analytic interpretation of the experimental observations

[Phys. Rev. Lett. 103, 045001 (2009)]. The mode-particle resonances for the FLM and the q ¼ 1 fishbone

occur in different regimes of the precession frequency of EPs. In certain ranges of the plasma rotation

speed and the EPs’ beta, a mode conversion can occur between the resistive wall mode and FLM.
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It is well-known that future advanced tokamak devices
(AT) need to steadily operate in a rather high-� (� ¼
2�0P=B

2, the ratio of the plasma pressure to the magnetic
field pressure) region. However, the achievable maximum �
is often limited bymacroscopicMHD instabilities such as the
external kink mode. The latter can be completely stabilized
by a perfectly conducting wall located close enough to the
plasma surface. In a realistic device, the wall has finite
conductivity, which only helps to convert the fast growing
kink mode to a slowly growing, the so-called resistive wall
mode (RWM). The growth time of the RWM is comparable
to the wall eddy current decay time. The RWM is unstable in
the high-� region �no-wall

N < �N < �ideal
N , where �no-wall

N

and �ideal
N are the normalized � limits without and with

an ideal wall, respectively, and �N is defined as �N ¼
�½%�a½m�B½T�=I½MA� with a, I, and B being a plasma
minor radius, plasma current, and toroidal magnetic field,
respectively. Early theories [1–3] have shown that the combi-
nation of the plasma flow and certain energy dissipation
mechanisms, such as Landau damping, shear Alfvén damp-
ing, and classical viscosity, can fully suppress the RWM
instability. Further investigations [4–7] have shown that the
RWM can be suppressed by a very slow plasma rotation,
when the drift kinetic damping, resulting from the resonant
interaction between the magnetic precession motion of
trapped thermal particles and the mode, is considered. The
stabilizing effect of the trapped energetic particles (EPs) on
the mode has also been investigated numerically [8–10]. In
recent experiments, a fishbonelike bursting mode (FLM) is
observed when the neutral beam injection is perpendicularly
injected into the high-� plasmas [11,12]. At the same time, a
marginally stable RWM is also observed. We mention that
various names for this bursting mode have been proposed in
the literature, such as ‘‘energetic-particle-driven wall mode
(EWM)’’ in JT-60U [11] and ‘‘off-axis fishbone’’ [12] in
DIII-D, respectively.

In this Letter, we explain the above experimental obser-
vations, based on an analytic calculation. We use an ex-
tended RWM dispersion relation including the contribution
of the trapped EPs. We demonstrate that when the

perpendicular beta of EPs exceeds a critical value, a FLM
instability can be excited, together with the slowly growing
RWM.
In what follows, the extended dispersion relation [4,13]

of the RWM, neglecting the inertial term but taking into
account the contribution of the trapped EPs, is written as

D ¼ �i!��w þ �W1 þ �Wk þ �WMHD;h

�Wb þ �Wk þ �WMHD;h

¼ 0; (1)

where ! ¼ !r þ i� is the eigenvalue of the RWM instabil-
ity, with !r and � being the real frequency and the growth
rate of the mode, respectively. �W1 and �Wb refer to the
perturbed fluid potential energy without and with an ideal
wall, respectively. The fluid potential energy includes both
the plasma and vacuum contributions. �Wk and �WMHD;h

denote the kinetic and fluid components, respectively, of
the perturbed kinetic energy induced by the trapped EPs.
The factor ��w ¼ �0�bdð1� a2m=b2mÞ=ð2mÞ is defined
as the typical wall eddy current decay time, with a, b, d,
m, �, and �0 being the plasma minor radius, the wall minor
radius, thewall thickness, the poloidalmode number, thewall
conductivity, and the permeability of free space, respectively.
We note that the fluid energy term (the adiabatic term),
associated with EPs, explicitly appears in Eq. (1), but is
implicitly included in the total fluid energy in Refs. [4,13].
According to Refs. [14–16], the forms of �WK and

�WMHD;h, in the presence of the plasma flow, can bewritten

as

�Wk ¼ �29=2�3Rmh

Z
Brdr

Z
d�

�
Z

dEE5=2Kb
�J�

Q

!�!0 �!d

�J; (2)

�WMHD;h ¼ �
Z

d3xð�? � rPh?Þð��
? � �Þ; (3)

where �?, � ¼ ðb � rÞb, Ph?, andmh are the perpendicular
component of the plasma displacement, magnetic curvature,
perpendicular component of the EPs’ pressure, and EP mass,
respectively; r and R are the radial variable and major radius
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of the torus, respectively; B ¼ B0 (1� 	 cos
) denotes the
equilibrium magnetic field to the lowest order in 	 ¼ r=R,
with 
 being the poloidal angle; J ¼ �B=2ðr � �?Þ � ð1�
3�B=2Þ�? � � with � ¼ �mh=Ek (� ¼ v2

?=2B and

Ek ¼ mhv
2=2 � mhE are the magnetic moment and the

kinetic energy of EPs, respectively); Q ¼ ð!�!0Þ@F=
@E� ð@F=@rÞ=ðr!cÞ with F, E, and !c being the distribu-
tion function, energy, and cyclotron frequency of the trapped

EPs, respectively; Kb is defined as Kb ¼
R
b
�
b

ð1�
�BÞ�1=2d
=�, with 
b being the turning point of the trapped
EP. Herewe have used �J to denote the averaging of J over the
particle bounce orbit ( �J� is the complex conjugate of �J); !d

has been used to express the bounce-average magnetic
precession frequency of the trapped EPs, !d ¼ K2Eq=

ðKbr!cRÞ, with q being the safety factor and K2 ¼R
b
�
b

ð1 � �BÞ�1=2 cos
d
=� ¼ 2ð2=	�B0Þ1=2½2EðktÞ�
KðktÞ�=�, where KðktÞ and EðktÞ are the complete elliptic
integrals of the first and second kinds, respectively, with the
argument kt ¼ ð1=�B0 þ 	� 1Þ=ð2	Þ [in the following,
EðktÞ � E andKðktÞ � K].�B0 is defined as the pitch angle.
In addition, we have used !0 to denote the Doppler shift
frequency.

For simplicity, the external kink mode eigenfunction for
a cylindrical equilibrium [13] is used to calculate the
quantities �Wk and �WMHD;h. The mode displacement

is taken as �? ¼ amr̂m�1ðer þ ie
Þeiðm
�n�Þ=F0 with n
being the toroidal mode number, F0 ¼ ðm� nqÞa=ðRqÞ,
and r̂ ¼ r=a. From these, the quantity �J in the �Wk can be

written as �J ¼ ð1� �B0=2Þeið�n�ÞK2mar̂m�1=ð2RF0KbÞ
with additional assumption of r � �? ¼ �2�? � �. Here,
we consider the case of m ¼ 2 and n ¼ 1. The perpen-
dicular beta of the trapped EPs, averaged over the plasma
volume, is given as

�h ¼
�Z

d3xðPh?Þ=ðB2=2�0Þ
�
=V

¼ c�
Z

rdrd�dEKbEf; (4)

where c� ¼ �Np�0mh=ðRBa2Þ and Ph? ¼ mh

R
d3vEF;

f ¼ 25=2R
ffiffiffiffi
E

p
F=Np is the normalized form of the distribu-

tion function, with Np being the total number of EPs.

As for the trapped EPs from the neutral beam injection,
we have assumed a slowing-down equilibrium distribution
function [i.e., f / E�1�ða� a0Þ]. The contribution of
the trapped EPs to the RWM dispersion relation can be
obtained as

�ŴK0 � �Ŵk þ �ŴMHD;h

¼ 12�

�
1� �0B0

2

�
2 �hR

Ka

�
ðÂ� B̂Þ 2

7
� ln

�
1� 1

�

�

� 2

7

�
Âþ 5

2
B̂

�
�

�
2

�
1

5�
þ 1

3�2
þ 1

�3

�

� 1

�3

1ffiffiffiffiffi
�

p ln

�
1þ ffiffiffiffiffi

�
p

1� ffiffiffiffiffi
�

p
���

þM; (5)

where �Ŵ ¼ 2R�0F
2
0�W=ð�B2a4m2Þ, and � ¼

ði�þ!r �!0Þ=!ds � i�=!ds þ�r ��0.
The coefficients are

Â ¼ ð2m� 2Þð2E� KÞ=qþ ð2E� KÞ=ð2qÞ
� ð2E� KÞ=ð�0B0ÞðE=KÞ0 � ½E=ð�0B0KÞ
þ kt=q� 1=ð2�0B0Þ � 1=ð2qÞ�ð2E� KÞ0; (6)

B̂ ¼ ½ð1� 2ktÞ=q� ð2E=K� 1Þ=ð�0B0Þ�KðE=KÞ0
� ð2E� KÞ=q; (7)

M ¼ �12�ð1� 0:5�0B0Þ2�hRð1� 2ktÞð1� 1=qÞ
� ð2E� KÞ0=½Kað4m� 3Þ�; (8)

and !ds ¼ K2ðaÞEmq=½KbðaÞmha!cR� denotes the pre-
cession frequency of the trapped EPs at the plasma edge,
with Em being the birth energy of the trapped EPs. The
prime in Eqs. (6)–(8) denotes the derivation with respect to

kt. To obtain a simple expression of �ŴK0, in the above
calculation, we have assumed that the arguments of elliptic
integrals are independent of the minor radius r. These
elliptic integrals are approximated by their edge values.
Numerical calculations without this approximation do not

show qualitatively different results. The form of �ŴK0 is
analogous to that of Eq. (29) in Ref. [15]. Equation (5)
shows that, at the marginal stability (i.e., � ¼ 0), either

� � 1 or �> 1 can induce a finite Imð�ŴK0Þ (the imagi-

nary part of �ŴK0) through the resonance between the
trapped EPs and the mode. The resonances of the cases
� � 1 and�> 1 are embedded in the terms lnð1� 1=�Þ
and ln½ð1þ ffiffiffiffiffi

�
p Þ=ð1� ffiffiffiffiffi

�
p Þ�, respectively. We mention

that an analytic calculation has been made for the (m ¼
2, n ¼ 1) mode in Ref. [17], where a fast growing insta-
bility, with double kink structure, is predicted as the hot ion
beta exceeds a threshold value. However, the above cited
work is based on an ideal kink dispersion relation, and with
a special choice of the top-hat structure for the mode
eigenfunction. In this Letter, we use the RWM dispersion
relation, and assume an external kink mode eigenfunction.
According to Ref. [13], the normalized forms of the fluid

potential energy without and with an ideal wall are given,
respectively, as

�Ŵ1 ¼ �4�ðm� nqÞ2½1=ðm� nqÞ � 1�=ðmq2Þ (9)

and

�Ŵb ¼ �4�ðm� nqÞ2f1=ðm� nqÞ
� 1=½1� ðb=aÞ�2m�g=ðmq2Þ: (10)

Combining Eq. (5) with Eqs. (9) and (10), we obtain the
normalized dispersion relation

D ¼ �Ŵb þ ð�Ŵ1 � �ŴbÞ=½1� ið�r þ i�=!dsÞ!ds�
�
w�

þ �ŴK0 ¼ 0: (11)

When the effect of trapped EPs is taken into account, the
eigenvalue of RWM should be modified according to
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Eq. (11). It can be noted that, in Eq. (11),�ŴK0 is calculated

for a large aspect ratio toroidal plasma, while �Ŵ1 and

�Ŵb are calculated for a cylindrical plasma. The toroidal
effect will change the fluid potential energy. We have per-
formed a numerical sensitivity study by varying the values
of the fluid energy in a wide range, and found that the final
conclusions still hold. The plasma shaping (e.g., elongation
and triangularity) can also affect the results, mainly by
changing the mode eigenfunction and the trapped particle
precession frequency. The change of the mode eigenfunc-
tion modifies both the fluid and the drift kinetic energy
perturbations. The modification of the trapped particle pre-
cession frequency has been shown to reduce the hot ion
pressure threshold for triggering the q ¼ 1 fishbone [18].
The plasma shaping effects are not considered in this work.

We solve the dispersion relation (11) numerically, choos-
ing the following parameters: m ¼ 2, n ¼ 1, a ¼ 1 m,
R ¼ 3 m, B0 ¼ 2:3 T, Em ¼ 85 KeV, q ¼ 1:42, � ¼
0:055, b ¼ 1:2a, � ¼ 106 ��1 m�1, d ¼ 0:01a, and the
density n0 ¼ 1020 m�3. These operating conditions are
chosen, mainly to have a fluid unstable RWM regime in
the absence of kinetic effects. We also assume a flat q
profile to simplify calculations. The safety factor enters
into the drift kinetic energy only via the plasma perpen-
dicular displacement (the mode eigenfunction). A separate
investigation has been carried out, in order to understand
how the variation of the mode eigenfunction changes our
drift kinetic analysis. In particular, by considering the
m=n ¼ 3=1 mode, we find that the fishbonelike instability
can still occur when �� exceeds a threshold value.

Figure 1 plots the normalized eigenvalue versus �� �
�h=�. Figure 1(a) shows that when �� is less than the
critical value ��

c ¼ 0:141, only one branch of instability
(the unstable RWM with the damping effect of the trapped
EPs) exists. However, when �� >��

c, there are two un-
stable branches: one branch (solid curve) is completely
suppressed when �� > 0:2. This is the conventional
RWM branch. Rotational stabilization of this branch is
achieved solely by the mode resonance with EPs in our
model, not by other damping mechanisms such as the mode
resonance with the Alfvén or sound wave continua. The
other branch (dashed curve) is a bursting mode (i.e., FLM),
with initial real mode frequency �c ¼ 0:75, and the
mode growth rate ���w being roughly a linear function of
�� (>��

c). At �
� ¼ 0:2, the real frequency of the FLM

is !r ¼ 2:6!ds ¼ 1:5� 104 rad=s�1, or fr ¼ 2:5 kHz,
as shown by Fig. 1(b), and the mode growth rate � ¼
2:8� 103 s�1. These values are qualitatively comparable
with the experimental results of f

exp
r � 3:0 kHz and�exp �

1:0� 103 s�1 [11]. Reference [11] also shows that the
bursting mode has a 2=1 structure peaking near the q ¼ 2
rational surface, and it has a 3=1 structure at the plasma
edge.

Figure 1 also shows a possible mode conversion between
the RWM and the FLM. In fact, at a certain value of the
plasma rotation speed (�0 ¼ �0:76 for the case considered

here), the two branches of solution can merge, as shown by
the dotted curves in Fig. 1. For our case, the direct mode
conversion can approximately occur in a region of 0:12<
�� < 0:14, where the mode possesses both the RWM
character (growth rate decreasing with ��) and the FLM
character (real frequency increasing with ��).
Figure 2 displays Imð�ŴK0Þ as a function of ��. It is

well-known that the term Imð�ŴK0Þ is always stabilizing
for the RWM [4]. For the conventional RWM branch (solid

curve), Imð�ŴK0Þ increases with ��; hence, the mode
growth rate decreases with increasing ��. On the contrary,

the value of Imð�ŴK0Þ for the FLM branch (dashed curve)
decreases with increasing ��, and hence the FLM growth
rate increases with��, as shown in Fig. 1. The dotted curve
in Fig. 2 shows a situation when a direct mode conversion
occurs between the RWM and the FLM branches.
It is worth noting that, at critical point ��

c, the Doppler
shifted real frequency for the FLM is denoted by � ¼
�c ��0 > 1, which can result in a finite Imð�ŴK0Þ due to
the term ln½ð1þ ffiffiffiffiffi

�
p Þ=ð1� ffiffiffiffiffi

�
p Þ� in Eq. (5). Physically,

the finite Imð�ŴK0Þ arises from the resonant interaction
between the trapped EPs and mode [i.e., �c ��0�
!dðrsÞ=!ds ¼ 0], occurring at r ¼ rs < a the plasma mi-
nor radius. Because of the dominant 1=r dependence of the
precession frequency, the resonant condition can always be
satisfied at a certain minor radius. For the case without the
plasma rotation (�0 ¼ 0), the similar fishbonelike branch
(�c > 1) can also be found, with the conventional RWM
branch having a considerably higher growth rate, due to the
lack of the stabilization from the plasma rotation. We must
point out that the dominant kinetic contribution from the
EPs, for the FLM excitation, comes from a resonance

term such as ln½ð1þ ffiffiffiffiffi
�

p Þ=ð1� ffiffiffiffiffi
�

p Þ�, while the resonance
for the classical q ¼ 1 fishbone mode, following
White-Chen et al. [14,15], is mainly associated with the
lnð1� 1=�Þ-like term. Both resonances are associated
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FIG. 1. The (a) normalized growth rate ���w and (b) mode
frequency of the conventional RWM mode (solid curve) and the
FLM (dashed curve) as functions of the trapped EPs’ ��, for the
particle pitch angle �0B0 ¼ 0:95 and the normalized plasma
rotation frequency �0 ¼ �0:73. The dotted curve corresponds
to the case of �0 ¼ �0:76. The minus sign of �0 implies that
the plasma flow is in the opposite direction of the EPs’ magnetic
precession. The dash-dotted curve in (a) shows the growth
rate from a linear perturbative analysis. The þ symbol in
(b) indicates the marginal point for the FLM excitation.
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with the magnetic precession of EPs, but occurring in
different regimes. The value of EPs’ beta threshold
(���

c�) for the q ¼ 1 fishbone is about 0.002 [15]. This
threshold value is about 0.0077 for the FLM in our study, at
�0 ¼ �0:73.

Equation (11) can be solved, following a standard pertur-
bation expansion method, near the marginal point (��

c, �c)
for the FLM, by writing � ¼ �c þ ��c þ i�=!ds

and �� ¼ ��
c þ ���. Here, the values of �c and ��

c are
obtained by solving the equations Im½Dð�cÞ� ¼ 0 and
Re½Dð�cÞ� ¼ 0. Linearizing the dispersion relation (11),
and taking into account the condition �c!ds�

�
w 	 1, valid

for the FLM, we obtain the following equation for the per-
turbed growth rate of the FLM near the marginal point ��

c:

���w ¼ C1

A2
1 þ B2

1

�� � ��
c

��
c

; (12)

whereC1 ¼ �Ŵ1��Ŵb

�c
A1 �!ds�

�
w�Ŵ

bB1, A1 ¼ ��
c�Pc �

2ð�Ŵ1��ŴbÞ
�3

c!
2
ds
��2w

,

B1 ¼ ��
c�Sc � �Ŵ1 � �Ŵb

�2
c!ds�

�
w

;

Pc ¼ Re

�
@

@�

�
�ŴK0

�h

����������c

�
;

Sc ¼ Im

�
@

@�

�
�ŴK0

�h

����������c

�
:

Equation (12) also theoretically indicates possible con-
ditions for the existence of an unstable FLM branch as
�� >��

c, for instance, when C1 > 0. The calculation
shows that C1ð¼ 0:025Þ has a positive sign for the case
studied in this Letter. The calculated growth rate from
Eq. (12) [dash-dotted curve in Fig. 1(a)] agrees well with
the exact numerical solution of Eq. (11) [dashed curve in
Fig. 1(a)] near the marginal point, confirming the correct-
ness of the numerical solution.

In conclusion, when the perpendicular beta �� of the
trapped EPs exceeds a critical value��

c, the FLM instability
with external kink eigenstructure can be triggered, which
rapidly grows with increasing �� (>��

c), and eventually
becomes the dominant instability. Moreover, the FLM real
frequency is in the range of the magnetic precession fre-
quency of trapped EPs. The above characteristics of the
FLM are a qualitatively consistent experimental observa-
tion [11]. The dominant kinetic contribution from the
EPs, for the FLM, comes from the resonance term

ln½ð1þ ffiffiffiffiffi
�

p Þ=ð1� ffiffiffiffiffi
�

p Þ�, while the dominant resonance
term in the q ¼ 1 fishbone normally comes from the term
lnð1� 1=�Þ [14,15]. Both resonances are associated with
the magnetic precession of fast ions, but occurring in differ-
ent regimes. In addition, the conventional RWM branch is
stabilized by the mode resonance with EPs in our model,
and potentially also by other damping mechanisms (e.g.,
the Alfvén and sound wave continuum damping in the
presence of plasma flow, the mode resonance with thermal
particles, etc.). Finally, we point out that in certain ranges of
the plasma rotation speed and the hot ion beta, a mode
conversion can occur between the RWM and FLM.
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