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We combine technical, experimental, and theoretical efforts to investigate the collective dynamics of

artificial microcilia in a viscous fluid. We take advantage of soft lithography and colloidal self-assembly to

devise microcarpets made of hundreds of slender magnetic rods. This novel experimental setup is used to

investigate the dynamics of extended cilia arrays driven by a precessing magnetic field. Whereas the

dynamics of an isolated cilium is a rigid body rotation, collective beating results in a symmetry breaking

of the precession patterns. The trajectories of the cilia are anisotropic and experience a significant

structural evolution as the actuation frequency increases. We present a minimal model to account for our

experimental findings and demonstrate how the global geometry of the array imposes the shape of the

trajectories via long-range hydrodynamic interactions.
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Beating cilia are frequently encountered in nature to
achieve propulsion, and to pump fluid at microscopic
scales. Prominent examples include microorganisms, such
as paramecia [1], algae, such as Volvox colonies [2], and
ciliated epithelial tissues, which direct flow of mucosa and
fluids over macroscopic scales; see, e.g., [3]. Recently,
these propulsion mechanisms have sparked much interest
in two distinct scientific communities. From a technologi-
cal perspective, the past few years havewitnessed the quick
development of cilia-inspired microactuators, aimed at
transporting and mixing fluids in microfluidic channels.
These works focused mainly on the flow profile induced
by the asymmetric actuation of the artificial cilia [4,5].
From a more fundamental perspective, the synchronization
between beating cilia has motivated a surge in theoretical
works [6], echoed by a few experimental studies on artifi-
cial [7] and biological setups [8]. So far, these experiments
have been dedicated to two-body problems. One of the
main motivations for these works was to understand the
role of the hydrodynamic coupling in the coordination of
cilia beating in a viscous fluid. Most of the experiments
and models have focused on the phase dynamics of these
coupled active or actuated systems. Conversely, we report
on the beating amplitude of actuated microcilia carpets.

In this Letter, we investigate the dynamics of magnetic
microrods driven by an external precessing field in a
viscous fluid; see Fig. 1. We show that the long-range
hydrodynamic interactions result in an unexpected sym-
metry breaking of the beating trajectories, Fig. 2(a).
To address this many-body problem, we propose a novel
design strategy for the fabrication of extended magnetic
microcarpets, which we briefly describe below. In addi-
tion, we introduce a minimal but quantitative model to
rationalize our experimental findings. It indicates that the

shape and orientation of the trajectories reflect the large-
scale geometry of the cilia array.
Magnetic microcilia carpets and experimental setup.—

Over the past four years, numerous fabrication strategies
have been proposed to pattern microchannel surfaces
with field-responsive magnetic microcilia arrays [4,5,9].
However, the accurate control of extended carpet geome-
tries and the actuation via spatially homogeneous fields
have not been achieved simultaneously. We combined soft-
lithography techniques and colloidal self-assembly to over-
come these technical obstacles. By doing so, we managed
to make prototypal magnetic cilia arrays organized
into tunable arrangements over large scales, Fig. 1(a).

FIG. 1 (color online). (a) Snapshot of a square array of self-
assembled colloidal filaments driven by a precessing magnetic
field. The pitch of the array is p ¼ 30 �m. The filaments are
organized into a rectangular carpet inside a microchannel.
(b)–(e) The filaments are formed by self-assembly of super-
paramagnetic colloids. A fraction of them aligns with magnetic
anchoring sites at the bottom of the chamber. The excedentary
filaments are rinsed away, leaving an array of filaments organ-
ized in the geometry imposed by the magnetic template.
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The fabrication of the microfilaments themselves, via self-
assembly of superparamagnetic colloids, has been previ-
ously described [10]. However, the organization of these
structures into controlled geometries remained virtually
impossible. To achieve spatial ordering, we guide the self-
assembly of colloidal chains, using a soft-lithographied
magnetic template sketched in Fig. 1(b). In brief, using
conventional replica molding techniques, we pattern a
polydimethylsiloxane (PDMS) elastomer sheet with square
lattices of square holes (width 6 �m, depth 3 �m, and
pitch 30 or 40 �m). In each hole, a single paramagnetic
colloid (Dynabeads, diameter 3:5 �m) is deposited via
capillary assembly following [11]. The resulting template,
Fig. 1(b), is used to seal a PDMS microchannel (height
150 �m, width 400 �m, length 1 cm). The channel is

filled with colloidal particles of radius a ¼ 375 nm and
magnetic susceptibility �� 1 (Ademtech). The colloids
are diluted to a volume fraction �� 0, 125% in an
aqueous solution containing 0.1 wt% polyacrylic acid
(Mw ¼ 25� 104 amu, Sigma) and 0.1 wt% nonyl phenol
ethoxylate (surfactant NP10, 0.1 wt%, Sigma), Fig. 1(c).
The flow is then stopped with pneumatic PDMS valves
[12], and a 24 mT vertical magnetic field is applied imme-
diately after the filling of the channel. The magnetic dipo-
lar interactions between the paramagnetic particles cause
them to organize into single stranded chains, aligned with
the direction of the field and spread all over the channel,
Fig. 1(d). The polyacrylic acid molecules adsorbed on their
surface link the colloids irreversibly [10]. The excedentary
filaments are subsequently rinsed away with a 50 wt%
water-glycerol mixture (viscosity � ¼ 5 mPa � s), Fig. 1(e).
The resulting microcilia carpet is actuated by a set of three
perpendicular Helmoltz coils, generating a 3D magnetic
field, homogeneous over the whole sample [13,14]. The
internal dipolar interactions along each filament tend to
align its main direction with the magnetic field; see
Fig. 1(f) and movie in the supplementary material [15].
We filmed simultaneously �50 cilia at 30 frames per
second, Fig. 1(a). Incidentally, note that this prototyping
technique allows in principle for a vast range of geome-
tries, which can extend up to several millimeters.
Collective beating of magnetic cilia.—We consider the

simplest isotropic 3D actuation cycle: the magnetic field
precesses around the vertical axis at a constant angular
velocity !, keeping a constant angle �B ¼ 15� with the z
axis, Fig. 1(e). We first recall that in this small inclination
limit, an isolated cilia responds linearly to the driving field,
and the position of its tip follows a circular trajectory at a
constant angular speed! [14]. This is not what is observed
with the cilia carpets. All the cilia do move synchronously
at a constant angular speed !, but the tip trajectories break
the rotational symmetry of the driving, as shown in the
pictures in Fig. 2(a). The increase in the driving frequency
results in the stretching of the beating patterns. In addition,
the angle c between the main axis of these anisotropic
trajectories and the x axis decreases with ! (the x axis is
here defined by the channel orientation). Changing the sign
of the actuation results in mirrored trajectories. In order to
quantify these structural changes, we fitted the trajectories
by ellipses, and plotted the variation of the anisotropy and
of the orientation with! in Figs. 2(b) and 2(c). We defined
the anisotropy as ðr1 � r2Þ=r1, where r1 and r2 are, re-
spectively, the major and the minor axis of the ellipses. The
dispersion of the data mainly originates from the polydis-
persity of the filament lengths: ‘ ¼ 135 �m� 10 �m.
The error bars correspond to the maximal deviation from
the mean values. Before going further, let us introduce the
orientational relaxation time � of an isolated rod. �
is defined by the force balance between the magnetic
and viscous forces acting on the cilia upon a sudden
change in the field orientation. These forces scale as
fmag � ða�BÞ2=ð�0‘Þ and fv � �ð‘=�Þ, respectively,

FIG. 2 (color online). (a) Superimposed pictures revealing
the trajectories followed by the tip of the filaments. Lattice pitch
30 �m, field amplitude B ¼ 8 mT. (b)–(e) Symbols:
Experimental data. Full line: Theoretical prediction from the
mean-field model. Blue filled symbols (red open symbols)
correspond to lattices with a p ¼ 40 �m pitch (p ¼ 30 �m).
Field amplitudes B ¼ 4 and 8 mT. (b) Anisotropy as a function
of the rescaled angular velocity. Straight line: Best fit from the
mean-field model (�x ¼ 0:19�, �y ¼ 0:43�). (c) Orientation of

the major axis as a function of the rescaled angular velocity.
(d) Variations of the major axis and minor axes with !�, and
comparison with the variation of the trajectory radius for an
isolated cilium (black diamonds). Inset: Close-up on the low-
speed regime. The major axis displays nonmonotonic variations.
(e) Variation of the time-averaged phase lag between the tip and
the field orientation and comparison with the same phase lag for
an isolated magnetic cilium (black diamonds).
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where � is the fluid viscosity. We measured � according to
the procedure introduced in [14], which yields � ¼
ð4:37� 10�3Þ=B2 for our experiments, where the length
of the filaments has been kept constant. � is typically of the
order of a few seconds.

First, we note that all the measurements obtained for
different field amplitudes, B, collapse on the same master
curves when we rescale the angular speed ! by �,
Figs. 2(b)–2(e). This implies that !�, the so-called
Mason number, is the only dimensionless parameter in-
volving the driving speed in this problem. At low speed,
!� � 1, the anisotropy increases linearly with !, and c
slowly decays from a finite value close to 45�. At high
speed, !� � 1, the anisotropy plateaus to a value close to
0.5 and the trajectories align with the x axis. In addition, we
compare the major and minor axes individually to the
radius r0 of the circular trajectory followed by an isolated
cilium; see Fig. 2(d). In fact, the variations of r0 and r2
cannot be distinguished: they both start from ‘ sin�B and
decay to 0 above a well-defined crossover at !� ¼ 1.
Conversely, r1 remains close to the static value ‘ sin�B
up to !�� 5, and then decays to 0 with the same slope as
r2. Looking more closely at the low-speed regime, we
notice that r1 undergoes nonmonotonic variations and
reaches its maximal amplitude at !�� 1; see the inset in
Fig. 2(d). These observations reveal that the cilia have
more than one relaxation time when beating within a
carpet. At this point, we can anticipate on our theoretical
model and infer that those two relaxation times arise from
geometrical corrections to �, since all the data collapse
with !�. To close this overview, we point that the time-
averaged phase lag h�i between the rod and the field
orientation is significantly reduced compared to the case
of a single cilium. Nonetheless, the shape of the curve
h�ið!�Þ is conserved; see Fig. 2(e).

Theoretical model and physical interpretations.—To
explain quantitatively the symmetry breaking of the trajec-
tories, we introduce a minimal far-field model. The rect-
angular cilia carpet is modeled by a 2N � 2M lattice of
pointwise particles located at Rij ¼ pðiex þ jeyÞ þ rijðtÞ,
at a distance ‘ from a solid wall; see Fig. 3. Each particle is
driven by an external time-dependent force fðRij; tÞ. Note
that we disregard the effect of the magnetic coupling
between the cilia. The velocity of the particle (i; j) is
related to the force acting on all the other particles via

@tRij ¼
X

n;m

GðRij �Rn;mÞ � fðRn;m; tÞ; (1)

where, for sake of simplicity, the hydrodynamic coupling
between the particles is described by the Blake-Oseen
tensor G. G is the Green function of the Stokes equation
associated to a force monopole oriented parallel to a solid
wall in a viscous fluid [16]. By definition, Gð0Þ 	 ��1I is
the isotropic mobility tensor for an isolated particle. We
now perform a mean-field approximation and assume that
all the cilia follow identical trajectories in a synchronous
manner: rijðtÞ ¼ rðtÞ. This approximation is justified by

our experiments: we did not observe any spatial heteroge-
neities in the phase of the cilia tips. Assuming that ‘ > p,

at leading order in p=‘, we have GðRÞ ¼ 3‘2cos2�B
2��R5 RR, for

R � 0 [16]. Summing over n and m, and after some
elementary algebra, Eq. (1) then reduces to the equation
of motion for a single anisotropic particle driven by a time-
dependent force:

@tr ¼ ð	Iþ 
exexÞ � fðr; tÞ; (2)

where the expressions of the two positive mobility coef-
ficients are given in a supplementary document [17]. To
compute the trajectories, we now need to specify fðtÞ. As
we consider only small field inclinations, the magnetic
actuation is well approximated by a rotating harmonic
trap: fðtÞ ¼ rk½r� r0ðtÞ
2, with r0ðtÞ¼‘sin�Bðcos!texþ
sin!teyÞ [14]. Note that relaxing this harmonic hypothesis

for the force and the geometric condition ‘ > p does not
qualitatively change our predictions, as Eq. (2) retains the
same form. In the present case Eq. (2) corresponds to the
equation of motion for two uncoupled 1D overdamped
harmonic oscillators driven by sinusoidal forces. They
are readily solved, and the beating trajectories rðtÞ 	
½xðtÞ; yðtÞ
 are

xðtÞ ¼ ‘ sin�Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð!�xÞ2

p cos½!t� arctanð!�xÞ
; (3)

yðtÞ ¼ ‘ sin�Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð!�yÞ2

q sin½!t� arctanð!�yÞ
; (4)

where �x 	 1=½kð	þ 
Þ
 and �y 	 1=ðk	Þ are the two

relaxation times of the particles, along the x and y directions,
respectively. Defining the major and the minor axes as the
extrema of rðtÞ, we can compute numerically rið!Þ for
i ¼ 1; 2, c ð!Þ and ��ð!Þ. To test our theoretical predic-
tions, we first determined the two free parameters �x and �y
by fitting the anisotropy data, Fig. 2(b), and then used the
same parameters to calculate the major and minor axes, the
inclination, and the phase lag. As shown in Fig. 2, our
model yields excellent agreement with the experiments. This
unambiguously proves that the anisotropic trajectories

FIG. 3 (color online). (a) Sketch of geometry used in the
theoretical model. (b) Two synchronous rotators driven by a
harmonic trap. (c) Direction of the induced forces in the low-
speed limit. The trajectories are effectively sheared by the hydro-
dynamic coupling. (d) Same picture in the high-speed regime
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originate only from the hydrodynamic coupling between the
cilia, and not from their magnetic interactions.

Moreover, Eqs. (3) and (4) imply that the symmetry
breaking of the trajectories reflects the large-scale anisot-
ropy of the cilia carpet. The trajectories are anisotropic if
�x � �y, or equivalently if
 � 0. This mobility coefficient

vanishes for symmetric (square) carpets only: indeed it
arises from the interactions between particles located at a
distance larger than the width of the cilia carpet [17]. This
coupling enhances the particle mobility along the x direc-
tion, thereby effectively stretching the beating trajectory.

More quantitatively, the minor and the major axes are
reached at t�, defined as @tr

2ðtÞjt� ¼ 0. At low speed,
expanding Eqs. (3) and (4) at first order in !�, we
obtain @tr

2ðtÞ ¼ 2ð‘ sin�BÞ2ð�x � �yÞ!2 cosð2!tÞ, which

implies that the trajectories are oriented at !t� ¼ 45�.
Interestingly, this orientation is independent of the two
relaxation time values, provided that �x � �y. We can

provide more physical insight into this purely geometric
result by looking at the structure of Eq. (2). The equation
has the same structure for all carpet sizes and aspect ratios:
understanding the two-body problem is sufficient to ac-
count for the structural change of the beating patterns.
Equation (2) can be thought of as the equation of motion
for two hydrodynamically coupled synchronous particles;
see Fig. 3(b). When !� � 1, the particle closely follows
the trap motion, and the force acting on the cilium is
tangent to the trajectory. Therefore, the force induced
by the rotation of the second cilium on the first one,

ðf � exÞex, is extremal for !t ¼ �

2 modð�Þ, and vanishes

for !t ¼ 0modð�Þ. This results in a net shear of the
initially circular trajectory, as depicted in Fig. 3(c).
Consequently, the trajectories are expected to be stretched
at a 45� angle from the x axis, which is precisely what we
observe in our experiments, Fig. 2(c). We emphasize that
this last picture is generic, and does not depend on the
specifics of the driving force. Since the amplitude of the
induced force scales as r!, the stretching of the trajectory
is expected to grow linearly with the driving speed. Again,
this qualitative prediction is in agreement with our mea-
surements and our asymptotic analysis. Indeed, estimating
x and y at t� ¼ ��=ð4!Þ, we obtain ðri=‘ sin�BÞ2 ¼ 1þ
ð�1Þi!ð�x � �yÞ, with i ¼ 1; 2. We thus correctly predict

that the major axis increases with the driving frequency,
while the minor axis decreases, Fig. 2(d) and inset. As
a result the corresponding anisotropy ðr1 � r2Þ=r1 ¼
!ð�y � �xÞ increases linearly with !, in agreement with

our experimental data shown in Fig. 2(b).
In the opposite high speed limit, !� � 1, the phase

lag of the driven overdamped particles reaches �=2.
Therefore, the hydrodynamic coupling results in a net
stretching of the trajectories along the x axis, Fig. 3(d).
This simple picture is confirmed by Eqs. (3) and (4). For
!� � 1, they reduce to the parametrization of an elliptic
trajectory aligned with the x axis. Both r1 and r2 decrease
as 1=!, since the particle is driven faster than it can

respond to the field: r1 � ‘ sin�B=ð!�xÞ and r2 �
‘ sin�B=ð!�yÞ. For !� � 1, c decays to 0, and the an-

isotropy plateaus to a constant value given by the ratio
between the two relaxation times, ð�x � �yÞ=�x. This again
confirms our experimental findings, Figs. 2(b) and 2(c). In
addition, r1 increases for!� � 1, whereas it decreases for
!� � 1, reaching a maximal value close to !� ¼ 1 as
shown in the inset in Fig. 2.
As a last physical comment, we stress that the above

qualitative picture holds whatever the actuation mecha-
nism, provided that the filaments (i) have a finite response
time to the driving torque and (ii) beat (quasi)synchro-
nously. Therefore, the same structural changes in the beat-
ing patterns should be observed in carpets made of soft
filaments actuated individually by a constant torque, typi-
cally on ciliated cells and microorganisms.
Conclusion.—We combined technical, experimental,

and theoretical efforts to investigate the collective dynam-
ics of actuated microcilia in a viscous fluid. By doing so,
we uncovered unexpected anisotropic morphologies in the
beating trajectories. Importantly, we found the shape of the
precession patterns to be chiefly selected by the large-scale
geometry of the carpets via the long-range hydrodynamic
interactions between the cilia.
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