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We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the

ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement.

The observed pseudoentanglement for a small-size system already displays a singularity, a signature

which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions,

including an infinite-order critical point. The experimental results illustrate a successful approach to

investigate quantum correlations in many-body systems using quantum simulators.
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Entanglement, delineated as a nonlocal correlation, is
one ‘‘spooky’’ characteristic trait of quantum mechanics
[1]. The famous dispute between Bohr and Einstein
on the fundamental question of quantum mechanics, the
Schrödinger cat paradox, and the transitions from quantum
to classical worlds essentially involve entanglement. The
recent development of quantum information has rekindled
interest in entanglement, more as a possible resource for
information processing [2]. Various methods have been
proposed to characterize entanglement qualitatively and
quantitatively [3]. One immediate application of entangle-
ment is the investigation of quantum phase transitions
(QPTs) [4–6] in many-body systems, which occur at zero
temperature (T ¼ 0 K), where the transitions are driven
by quantum fluctuations and the ground-statewave function
is expected to develop a drastic change. The entanglement
properties extend and complement the traditional
statistical-physical methods for QPTs, such as correlation
functions and low-lying excitation spectra. However, how
to describe and measure entanglement in many-body sys-
tems is still a challenging task in both theoretical and
experimental aspects [7,8]. Most schemes for directly mea-
suring entanglement focus on the entanglement between
two qubits [9,10]. Although the degree of entanglement for
a medium-size or lager system can in principle be probed
[8,11], it has not been experimentally measured directly.

In contrast to classical approaches, quantum simulators
[12] provide a promising approach for investigating many-
body systems and enable one to efficiently simulate other
quantum systems by actively controlling and manipulating
a certain quantum system, and to test, probe, and unveil
new physical phenomena. One interesting aspect is to
simulate the ground states of many-body systems, where
usually rich phases can exist, such as ferromagnetism,
superfluidity, and quantum Hall effect, just to name a
few. In this Letter we experimentally simulate the ground
state of an XXZ spin chain [13] in a liquid-state
nuclear magnetic resonance (NMR) quantum information

processor [14] and directly measure a global multipartite
entanglement—the geometric entanglement (GE) [15,16]
in a version of NMR analog, or pseudoentanglement.
Exploiting the probed behavior of GE, we identify two
QPTs, which in the thermodynamic limit correspond to the
first and 1 orders, respectively. In the 1-order QPT, also
known as Kosterlitz-Thouless (KT) transition [17,18], the
ground-state energy is not singular. Consequently, the de-
tection of the critical point in the KT transition may pose a
challenge for correlation-based approaches [5,19], which
rely on the singularity of ground-state energy. Surprisingly,
the GE turns out to be nonanalytical but of different types
of singularity at the first- and 1-order transitions [20].
Remarkably, the qualitative features of ground-state entan-
glement in the thermodynamic limit displayed near both
transitions persist even for a small-size system, on which
our experiment is performed.
The GE of a pure many-spin quantum state j�i is

captured by the maximal overlap [15,16] �max �
max�jh�j�ij, and is defined as Elog2 ¼ �log2�

2
max, where

j�i � N
N
i¼1 jc ðiÞi denotes all product (i.e., unentangled)

states of theN-spin system. From the point of view of local
measurements, the GE is essentially (modulo a logarithmic
function) the maximal probability that can be achieved by a
local projective measurement on every site, and the closest
product state signifies the optimal measurement setting.
The GE has been employed to study QPTs [16,21], local
state discrimination [22], and entanglement as computa-
tional resources [23].
The XXZ spin chain is described by the Hamiltonian

HXXZ ¼ XN
i¼1

ðXiXiþ1 þ YiYiþ1 þ �ZiZiþ1Þ; (1)

where Xi, Yi, Zi denote the Pauli matrices with i indicating
the spin location, and � is the control parameter for QPTs.
We use the periodic boundary condition with N þ 1 � 1.
The XXZ chain can be exactly solved by the so-called
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Bethe ansatz and exhibits rich phase diagrams in the
ground state [13]. In the thermodynamic limit, for
� <�1, the system has the ground state with the ferro-
magnetic (FM) Ising phase. At � ¼ �1 a first-order QPT
occurs. For �1<� � 1, the system is in a gapless phase
or XY-like phase. At � ¼ 1 there is an 1 order or a KT
transition [17], where the ground-state energy, however, is
analytic across the transition, and so is any correlation
function. For � > 1, the system is in the Néel-like anti-
ferromagnetic (AFM) phase. The ground state is asymp-
totically doubly degenerate. However, the excitations
above the ground space have a gap. For � � 1, the ground
state takes a Néel or Ising AFM state, i.e.,
j . . . 10101010 . . .i, where j0i � j "i and j1i � j #i.

In the XXZ chain (1), the GE displays a jump across
� ¼ �1 but a cusp (i.e., the derivative is discontinuous)
across � ¼ 1 [20]. Both features are present for small-
size systems, as well as in the thermodynamic limit. For
� <�1 the GE is essentially zero. Regardless of the
system size (as long as it is even), for �1< � � 1, the
closest product state is found to be j þ �þ� . . .i,
whereas for � � 1, the closest product state is found to

be j0101 . . .i, where j�i � ðj0i � j1iÞ= ffiffiffi
2

p
[24]. Right at

the KT point � ¼ 1, because of rotational symmetry, the
closest product states are j��?��? . . .i, where j�i and
j�?i are any arbitrary orthonormal qubit states. The sin-
gular behavior of ground-state GE can be used to probe the
KT transition, and there is no need to know the low-lying
spectrum.

In implementation we use a 4-spin chain. The entangle-
ment features pertinent to the QPTs in the thermodynamic
limit will survive. The ground-state energy and wave
function of the 4-spin chain are represented as (see supple-
mental material [25])

Eg ¼
�
4� ð� <�1Þ;
�2�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 8

p ð� >�1Þ; (2)

jgi ¼
� j1111i ð� <�1Þ;
j�1i cos�þ j�2i sin� ð� >�1Þ; (3)

where � 2 ð��=2; 0Þ is given via tanð2�Þ ¼ �2
ffiffiffi
2

p
=�,

and j�1i � ðj0101i þ j1010iÞ= ffiffiffi
2

p
, j�2i � ðj1100i þ

j0011i þ j1001i þ j0110iÞ=2. Figure 1(a) shows Eg as a

function of �. One should note that Eg is continuous at

� ¼ �1 while the ground state jgi is discontinuous.
In order to obtain the ground-state GE, one needs to

search for the closest product state j��i [20]. In fact, we
can choose the product states

j��ð�Þi ¼
8><
>:
j�1i � j1111i ð� <�1Þ
j�2i � j þ �þ�i ð�1<�< 1Þ
j�3i � j0101i ð� > 1Þ

(4)

to obtain the corresponding entanglement in the respective
range of �. To anticipate the experimental procedure, we
shall measure the ground-state overlap listed as

�1ð�Þ ¼ h�1jgi ¼
�
1 ð� <�1Þ
0 ð� >�1Þ (5)

�2ð�Þ ¼ h�2jgi ¼
8<
:

1
4 ð� <�1Þffiffi
2

p
4 cos�� 1

2 sin� ð� >�1Þ (6)

�3ð�Þ ¼ h�3jgi ¼
�
0 ð� <�1Þ
1ffiffi
2

p cos� ð� >�1Þ: (7)

From Eqs. (6) and (7), one finds that�2ð�Þ and�3ð�Þ cross
at � ¼ 1. Figure 1(b) shows the theoretical prediction for
�2

i ð�Þ (i ¼ 1, 2, 3) and the entanglementElog2 . The jump in

the entanglement at � ¼ �1 and the cusp at � ¼ 1 signify
the two QPT points.
In experiment, we choose the four carbons in crotonic

acid [26] dissolved in d6 acetone as the four qubits. We
generate the ground states using quantum networks and
implement the quantum gates by GRAPE pulses [27].
Various ground states can be created by varying the single
spin rotations that can be easily implemented (see supple-
mental material [25]). In principle, one can employ an
iterative method to experimentally measure the GE of
the ground state (see supplemental material [25]). To dem-
onstrate the proof-of-principle simulation of quantum
entanglement, instead, we first measure the overlap of the
ground state with several product states (4), which contain
the closest product states. From the measurement with the
already known closest product states, we can obtain the
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FIG. 1 (color online). Theoretical results in the 4-spin XXZ
chain. (a) Energy level of the ground state. (b) The overlap
square �2

i ð�Þ and entanglement Elog2
ð�Þ. The solid, dashed, and

dash-dotted curves show �2
i ð�Þ for j�1i ¼ j1111i, j�2i ¼

j þ �þ�i, and j�3i ¼ j0101i, respectively. Elog2
ð�Þ is shown

as the dotted curve. The jump at � ¼ �1 and the cusp at � ¼ 1
in Elog2

ð�Þ indicate the transition points for the QPTs, with the

first and 1 orders, respectively.
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ground-state GE. Next, to show that the obtained results
are the optimum, we vary the product states to test the
optimality.

The experimentally measured �2
i ð�Þ for various � are

shown in Fig. 2(a). The measured �2
i ð�Þ for � <�1 are

0.92, 0.048, and 0.019, indicated as the dotted, dashed, and
dash-dotted lines. The corresponding theoretical values are
1, 1=16, and 0, respectively. In the region � >�1, �2

1ð�Þ
can be fitted as �2

1ð�Þ ¼ 0:014, shown as the dotted line,
corresponding to 0 in theory.

We perform polynomial fits to the measured �2
2ð�Þ and

�2
3ð�Þ, and obtain the two solid curves that cross at the

point � ¼ 0:92, which is very close to the theoretically
predicted transition point at � ¼ 1. The discrepancy be-
tween experiment and theory mainly comes from the dif-
ferent experimental errors in measuring �2

2ð�Þ and �2
3ð�Þ.

The jump at � ¼ �1 and the cusp at � ¼ 0:92 reflect the
different types of QPT points.
In order to faithfully estimate the performance of the

experiment in measuring �2
2ð�Þ and �2

3ð�Þ in the region

� >�1, we introduce two decay factors �2 and �3 to fit
the experimental data as ½�2

2;3ð�Þ�exp ¼ �2;3½�2
2;3ð�Þ�theory,

shown as the thick dashed and dash-dotted curves in
Fig. 2(a) with the best scale factors as �2 ¼ 0:69 and �3 ¼
0:71, respectively. The difference between the decay fac-
tors comes from the different operations in measuring
�2

2ð�Þ and�2
3ð�Þ. In Fig. 2(b), we exploit the decay factors

to rescale experimental values of ½�2
2;3�exp=�2;3, from

which we obtain the expected values of pseudoentangle-
ment shown as 	. The rescaled �log2ð½�2

2;3�exp=�2;3Þ
can be fitted as the dotted and dashed curves that cross at
� ¼ 1:02.
In principle, we do not need to know the closest product

states in order to measure the entanglement. In the supple-
mental material [25], we describe an iterative procedure to
search for them and this procedure can be implemented in
experiment. For proof-of-principle demonstration of the
optimality experimentally, we simplify the procedure and
vary the product states j�ð�Þi by

j�ð�Þi ¼ Upð�Þj0101i; (8)

where Upð�Þ ¼ N
4
j¼1 e

�i�Yj=2, and experimentally mea-

sure �2 ¼ jh�ð�Þjgij2 for various � at three different
locations of the phase diagram, corresponding to � ¼
�0:9, 1, and 3, respectively. The theoretical and experi-
mental results are shown in Figs. 3(a) and 3(b), respec-
tively. The experimental data are compared to the
theoretical values of 0:66�2, 0:68�2, and 0:71�2, shown
in Fig. 3(b). One finds that the maximum of �2 occurs at
� ¼ �=2 and 0 for � ¼ �0:9 and 3, respectively. These
correspond to the respective closest product states, j�2i ¼
j þ �þ�i and j�3i ¼ j0101i, predicted theoretically.
Remarkably, for � ¼ 1, where the 1-order QPT occurs,
�2 is a constant independent of�, as we have expected and
noted earlier. This also means that arbitrary states prepared
by Eq. (8) can be chosen to measure the entanglement at
� ¼ 1, and this gives additional confirmation that the
created state at the KT point is rotationally invariant.
The experiment duration of the preparation of the

ground states for � >�1 is about 160 ms, which is non-
negligible (about 17%) compared to the coherence time T2.
Consequently, the decay of the signals due to the limitation
of coherence time is one of the main sources of errors.
Additionally, the imperfection of pulses and inhomogene-
ities of magnetic fields also contributes to errors. The
deviations of the experimental data from the theoretical
fitting in Fig. 3(b) represent the effects of the errors that
depend on the rotation angles, or the product states. In
particular the fluctuation of the data for � ¼ 1 in Fig. 3(b)
confirms the explanation for the shift of the measured cusp
in Fig. 2(a).
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FIG. 2 (color online). Experimentally measured �2
i ð�Þ (a) and

Elog2 (b) for various �. In figure (a), the experimental data are

shown asd,
 and * for �2
i ¼ jh�ijgij2, corresponding to j�1i,

j�2i, and j�3i. The measured �2
i ð�Þ for � <�1 are indicated

as the dotted, dashed, and dash-dotted lines. In the region � >
�1, �2

1ð�Þ can be fitted as the dotted line. Through fitting the

points for �2
2ð�Þ and �2

3ð�Þ using polynomial functions, we

obtain the two solid curves that cross at point � ¼ 0:92, close
to the theoretical point at � ¼ 1. The thick dashed and dash-
dotted curves show the fitting results using the theoretical �2

2ð�Þ
and �2

3ð�Þ by introducing decay factors 0.69 and 0.71, respec-

tively. In (b), in the region � <�1, Elog2
is shown as +. For � >

�1, we rescale the measured �2
2ð�Þ and �2

3ð�Þ as �2
2ð�Þ=0:69

and �2
3ð�Þ=0:71, respectively. The dotted and dashed curves that

cross at � ¼ 1:02 show the fitting results of the rescaled data
using polynomial functions. The expected Elog2

after rescaling is

indicated by 	.
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In conclusion, we demonstrate the nonanalytic proper-
ties of many-body systems in a quantum simulator using
NMR. The QPTs with first and 1 orders in the XXZ spin
chain are detected by directly measuring the pseudoentan-
glement of the ground states created by quantum gates. An
alternative approach for creating ground states would be
via adiabatic evolution [28]. Our preliminary numerical
analysis indicates that ground states for � >�1 can be
approximately generated with high fidelity (e.g., >0:998)
by the adiabatic evolution from the ground state at a large
�. The experimental implementation is a possible future
direction.
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Dusuel, and J. Vidal, ibid. 101, 025701 (2008).

[22] M. Hayashi et al., Phys. Rev. Lett. 96, 040501 (2006).
[23] D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett.

102, 190501 (2009).
[24] Here j þ �þ� . . .i is equivalent to j � þ�þ . . .i or

more generally j�þ���þ�� . . .i with �� � ðj0i �
ei�j1iÞ= ffiffiffi

2
p

due to the symmetry in the ground states.
Similarly, j1010 . . .i is equivalent to j0101 . . .i.

[25] See supplemental material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.107.010501 for de-
tails regarding (1) solving the 4-spin XXZ chain, (2) an
iterative method for computing the GE and experimentally
measuring it without prior knowledge of closest product
states, and (3) further discussions on experimental imple-
mentation.

[26] E. Knill et al., Nature (London) 404, 368 (2000).
[27] N. Khaneja et al., J. Magn. Reson. 172, 296 (2005); C. A.

Ryan et al., Phys. Rev. A 78, 012328 (2008).
[28] P. Král, I. Thanopulos, and M. Shapiro, Rev. Mod. Phys.

79, 53 (2007); X. Peng et al., Phys. Rev. Lett. 103, 140501
(2009).

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

β (π)

Λ
2

a

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

β (π)

Λ
2

b

FIG. 3 (color online). Theoretical (a) and experimentally mea-
sured (b) �2 for various product states created as Upð�Þj0101i
[see Eq. (8)]. Three ground states for � ¼ �0:9, 1, and 3 are
chosen and the corresponding �2 are shown as the solid, dash-
dotted, and dashed curves in (a), respectively. The experimental
data are shown as *, d, and 
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respectively. In comparison with the theoretical values, they can
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