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We investigate the interplay between the strong correlation and the spin-orbit coupling in the

Kane-Mele-Hubbard model and obtain the qualitative phase diagram via the variational cluster approach.

We identify, through an increase of the Hubbard U, the transition from the topological band insulator to

either the spin liquid phase or the easy-plane antiferromagnetic insulating phase, depending on the

strength of the spin-orbit coupling. A nontrivial evolution of the bulk bands in the topological quantum

phase transition is also demonstrated.
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Recently, a new field has emerged in condensed matter
physics, based on the realization that a spin-orbit interac-
tion (SOI) can lead to topologically insulating electronic
phases [1,2]. A topological band insulator (TBI) has a
nontrivial band structure coming from the strong SOI.
Theoretical and experimental studies have found such
materials in both two (2D) [3–5] and three [6–10] dimen-
sions. TBI is characterized by a charge excitation gap in the
bulk, and gapless helical edge (or surface) states lying
inside the bulk gap protected by the time reversal symme-
try. As a new quantum state which is the Z2-graded topo-
logical distinction from other conventional insulators, it
has attracted great attention. Though great progress has
been achieved, the current research mostly focuses on the
weakly interacting systems. It has been proposed that the
topological insulator may also appear in the systems with
substantial electron correlations, such as 4d and 5d tran-
sition metal oxides [11,12]. It is also shown experimentally
that the electron interaction plays a crucial role in deter-
mining the ground state of topological insulators in the 2D
limit [13]. Therefore, the effects of electron correlations
on the topological insulators present a new challenge.

The correlation effects in topological insulators can be
studied either by interaction-driven topological insulators
[14–16] or by introducing interactions to a system with a
strong SOI [11,17–19]. In this Letter, we investigate the
model proposed by Kane and Mele [3] on the honeycomb
lattice for describing a 2D topological insulator, and in-
troduce the Hubbard interaction to analyze the Mott phys-
ics. Recently, the Hubbard model on the honeycomb lattice
has been studied by Meng et al. [20] using the quantum
Monte Carlo (QMC) method, in which a spin liquid (SL)
phase is found to exist between the semimetallic (SM)
phase and the antiferromagnetic (AF) Mott insulator (MI)
phase. The mean-field analysis and QMC simulations for
the Kane-Mele-Hubbard (KMH) model reveal that the TBI
phase is unstable against the magnetic ordering phase
[17,21,22]. But the whole phase diagram, especially the

transition between the TBI and the MI, and the nature of
the single-particle excitations in the bulk and on the edges
are still open questions. As the existence of gapless edge
states is the direct manifestation of the topological nature,
the study of the single-particle excitation spectra is the
natural way to investigate the phase transition between
TBI and MI. Here, we use the variational cluster approach
(VCA) [23], which takes into account exactly the effects of
short-range correlations by an exact diagonlization of the
separative clusters. We find a topological quantum phase
transition from TBI to MI or SL with increasing U and this
process shows a nontrivial evolution. Starting from TBI,
the SOI gap�SO closes first and then theMott gap opens up
but without the gapless edge states for increasing U, which
is closely related to the topological properties of the sys-
tem. The closing process of �SO is accompanied with a
splitting of both the conduction and valence bands. For the
strong SOI, the state transiting from TBI is the easy-plane
AF Mott insulator. For the weak coupling, a spin liquid
phase emerges between the TBI and the AF Mott insulator.
The Kane-Mele-Hubbard model is defined as H ¼

H0 þHU, where H0 is the model proposed by Kane and
Mele on the honeycomb lattice as shown in Fig. 1(a) [3],

H0 ¼ t
X

hiji�
cyi�cj� þ i�

X

hhijii��0
�ijc

y
i��

z
��0cj�0 ; (1)

and HU the Hubbard interaction,

HU ¼ U
X

i

ni"ni#: (2)

Here, hi; ji and hhijii denote the nearest neighbor (NN) and
the next NN, respectively. � is the SOI constant and � the
Pauli matrices. �ij ¼ þ1ð�1Þ if the electron makes a left

(right) turn to get to the next NN site. Others are in standard
notation. We notice that the model can decouple into two
independent Hamiltonians for the up and down spins and
each is odd under time reversal. So, it is in the integer
quantum Hall (IQH) class.
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VCA is a cluster method of the self-energy functional
approach [23]. It has been successfully applied to, for
instance, the study of competing phases in high-Tc super-
conductors [24,25]. Despite the considerable finite-size
errors, VCA can predict the qualitatively correct trend for
the phase diagram [26]. In VCA, the lattice is tiled into
superlattice of clusters and the reference system is made up
of the decoupled clusters. The single-particle parameters
(denoted by t0) of the reference system are optimized
according to the variational principle. And one can add
any Weiss field to study the symmetry broken phases. For
the self-energy parameterized as �0ðt0Þ, we have the grand
potential:

�½�0ðt0Þ� ¼ �0ðt0Þ þ Tr ln½�ðG�1
0 ��0ðt0ÞÞ�1�

� Tr ln½�G0ðt0Þ�; (3)

where�0ðt0Þ andG0ðt0Þ are the grand potential and Green’s
function of the reference system, G0 is the free Green’s
function without interactions. The physical self-energy �
is given by the stationary point @�½�0ðt0Þ�=@t0 ¼ 0.

In our calculations, �0ðt0Þ is determined by �0ðt0Þ ¼
G�1

0 �G�1ðt0Þ and the lattice Green’s function Gðt0Þ is

calculated via the cluster perturbation theory [27]. We
first calculate G0ðt0Þ of each cluster by the exact diagonal-
ization method and then get Gðt0Þ by treating the inter-
cluster hopping V perturbatively, namely Gðk; !Þ ¼
G0ðk; !Þ½1� VðkÞG0ðk; !Þ��1 written in the momentum
space. Where the matrix V is given by V��ðkÞ ¼P

RV
0R
��e

ik�R with R the superlattice index. V0R
�� contains

all hopping terms between two clusters at 0 and R,� and �
denote different sites and spins in the two clusters. For the
calculation of bulk states, each cluster consists of a hexa-
gon [see Fig. 1(a)]. For the calculation of edge states, we
consider a strip geometry as illustrated in Fig. 1(c). In order
to completely tiling the strip, a 12-site cluster is used. In
realistic calculations, eight clusters are included in the y
direction to form a supercluster and the superclusters are
arranged periodically in the x direction. For illustration, we
only show schematically two superclusters in the y direc-
tion in Fig. 1(c). We have checked the results for ribbons
with different widths and with different cluster sizes in the
calculation of edge states, and find no obvious quantitative
changes.

To test the existence of the possible AF order, we

will include the following Weiss field, H�
AF ¼

h�AF
P

ið�1Þ�icyi�����0ci�0 , where �i ¼ 0 or 1, when i 2 A

or B. In the absence of the SOI, the spin sector has a SUð2Þ
symmetry. So, we have hzAF ¼ hx;yAF. This relation is broken
when the SOI is turned on. In this case, we will calculate
the grand potential �ðhAFÞ as a function of hzAF and hxAF,
respectively.

Our main results on the interplay between the Hubbard
interaction and the SOI are summarized in theU� � phase
diagram [Fig. 2]. Let us first discuss the � ¼ 0 line.

In VCA, the existence of the AF order can be determined
by the h�AF dependence of the grand potential �ðhAFÞ.
Figure 3(a) presents the results for different U. For weak
U, such as U ¼ 2t and 4t, �ðhAFÞ shows a monotonic
increase with hzAF (hzAF ¼ hxAF in this case), indicating

that no AF order forms in the system. However, for a large
U such asU � 6t, a minimum appears at finite hzAF and this
minimum moves to lower hzAF values with increase of U.

Therefore, we can infer that an AF order exists for a large
U as expected. Interestingly, we find that an obvious Mott
gap has opened up around the Fermi energy in the density
of states at U ¼ 4t [Fig. 3(b)]. This paramagnetic insulat-
ing phase is identified as the SL phase as also been found
recently by Meng et al. using the QMC simulation [20].

FIG. 1. (a) 6-site cluster tiling (dashed lines) on honeycomb
lattice used for the calculations of bulk properties. A and B
denote the two inequivalent sites, a1 and a2 the lattice unit
vectors. (b) First Brillouin zone. (c) An illustration of tiling
the ribbon used for the calculations of edge states. The super-
lattices (rectangle with solid lines ) are arranged periodically
along the x direction. For illustration, we only plot two clusters
(separated by the dotted horizontal line) in each superlattice,
while in the calculations eight clusters are included.

FIG. 2 (color online). Qualitative phase diagram of KMH
model. SM, TBI, SL and AF insulator denote the semimetal,
topological band insulator, spin liquid and antiferromagnetic
insulator, respectively. Above the dashedline in the AF insulator
phase, the z term of the AF order disappears.

PRL 107, 010401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JULY 2011

010401-2



Therefore, the system will undergo phase transitions from
the SM to SL and then to AF Mott insulator with U. Thus,
we can reproduce the QMC simulation results calculated
for � ¼ 0 [20].

When turning on the SOI, we find that the SL phase
maintains for a range of SOI up to � ¼ 0:125t. On the other
hand, the AF order is not isotropic. As seen from Figs. 3(c)
and 3(d), no minimum is found at U ¼ 4t for � ¼ 0:2t in
the hzAF dependence, but it can be found in the hxAF depen-
dence. It indicates that within a range of U, the z-direction
AF order is destroyed once the SOI is present. For � <
0:25t, when increasingU further, we find the appearance of
the z-term in the AF order eventually. However, for � �
0:25t, it has not been found up to U ¼ 10t. Thus, in the
phase diagram we plot the dashed line separating the AF
order with and without the z term. The easy-plane AF order
is the result of the interplay between the Hubbard interac-
tion and the SOI. As well known, the NN hopping will
generate an isotropic AF Heisenberg termH1 ¼ J1

P
hijiSi �

Sj with J1 ¼ 4t2=U in the strong-coupling limit. Similarly,

the next NN SOI generates an anisotropic exchanging term
H2 ¼ J2

P
hhijiið�Sxi S

x
j � Syi S

y
j þ SziS

z
jÞ [17], with J2 ¼

4�2=U. Notice that the z term in H2 favors antiparallel
alignment of the spins on the next NN sites; thus, it will
introduce a frustration to the NN AF correlation expressed
by H1. On the other hand, the xy term in H2 favors a
ferromagnetic alignment, so no frustration is introduced.
As a result, H2 coming from the SOI will suppress the
z-term of the AF order.

At another limit U ¼ 0, a TBI is expected to occur once
the SOI is turned on [3]. The TBI is characterized by
gapless edge states protected by the bulk gap opened by
the SOI. The spectral function of single particles is given
by Aðk; !Þ ¼ �2 ImGðk; !Þ=�. The results for several U
at � ¼ 0:1t are presented in Fig. 4, where the bulk bands

are plotted along the lines shown in Fig. 1(b) and the edge
states are calculated from a ribbon with the zigzag edges
[Fig. 1(c)]. For U ¼ 0, one can see that a bulk gap opens
resulting from the SOI [Fig. 4(a)]. At the meantime, clear
gapless edge states with sizeable spectral weights emerge
[Fig. 4(b)]. These results reproduce perfectly the characters
of a TBI [3]. Turning on the Hubbard interactionU, we find
that the bulk gap is reduced firstly and the edge states are
stable against a weakU, as shown in Figs. 4(c)–4(f). When
U is increased further, the bulk gap closes and the edge
states disappear simultaneously. After that, a bulk gap with
the character of the Mott gap occurs and no edge states
reemerge anymore, as shown in Figs. 4(g) and 4(h). Thus,

FIG. 3 (color online). (a) � as a function of hAF for various
values of U at � ¼ 0. (b) The density of states for U ¼ 4 and
� ¼ 0. (c) and (d): � vs hAF at � ¼ 0:2t along the z and
x-directions, respectively.

FIG. 4 (color online). Intensity plot of Aðk; !Þ for single-
particle excitations in the bulk [Figs. (a), (c), (e) and (g)] and
in the ribbon with the zigzag edges [Figs. (b), (d), (f) and (h)] at
� ¼ 0:1t. The white dashed curves in Figs. (c), (e) and (g) are the
mean-field fits discussed in the text. From the up to down figures,
U ¼ 0, 2t, 3t, 4t. The colors represent the intensity of spectrum
function as indicated by the color scale at the bottom. The inset
shows the U dependence of the renormalized velocity of edge
states at � ¼ 0:1t and 0:2t.
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we determine the phase boundary where the TBI disap-
pears by a criteria that the bulk gap closes and the edge
states disappear. Combining the above results, we conclude
that the TBI phase will make transition to the SL phase
when � � 0:125t and to the easy-xy plane AF phase for
� > 0:125t, as presented in the phase diagram of Fig. 2.

According to the bulk-boundary correspondence [1],
the existence of gapless edge states depends on the topo-
logical class of the bulk band structure. The transition from
TBI (topologically nontrivial state) to MI (toplogically
trivial state) must undergo a gap closing process in the
bulk. As far as we know, this process is demonstrated
clearly for the first time by a systematic numerical calcu-
lation presented here.

A first attempt to understand the evolution of the
spectrums in the KMH model is to include the AF
order parameter mA ¼ �mB ¼ jhni" � ni#ij [A and B
denote the sublattice in Fig. 1(a)] [17]. This gives rise

to the mean-field dispersion given by EðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"2ðkÞ þ ð��Um=2Þ2p
, with "ðkÞ the bare dispersion.

When Um=2 ¼ �, the spin-orbit gap closes. Then another
gap Um=2� � with a character of the Mott gap opens up
with the further increase of U. However, the evolution
shown in Fig. 4 exhibits a more complex behavior, namely,
both the valence and conduction bands around K are split
into two subbands. Comparing the numerical results for
different U and �, we note that the band splitting around K
depends on �2=U. This is the exchange integral in H2

coming from the second-order process of the spin-orbit
interaction as described above. So, we rewrite H2 as [17]

Hð2Þ
� ¼ �ðJ2=2Þ

P
hhijiiðayi"aj" � ayi#aj#Þðayj"ai" � ayj#ai#Þ and

choose another parameter 	 ¼ hayi"aj" � ayi#aj#i. By using

mA and 	 as adjustable parameters, we can give a fit to the
numerical results, which is plot as white dashed lines in
Fig. 4. This simple fit provides a possible understanding of
the evolution of the bulk bands.

Finally, let us discuss the effect of electron correlations
on the edge states. As shown in the inset of Fig. 4, we
notice a visible reduction of the velocity in helical Dirac
fermions at the edge in the TBI phase. This renormaliza-
tion arising from the two-particle scattering between the
left and right moving modes due to electron correlations,
which is allowed by the time reversal symmetry [28,29].

In summary, we have investigated the interplay between
the Hubbard interaction and the spin-orbit coupling in the
Kane-Mele-Hubbard model with the variational cluster
approach. We map a detail U� � phase diagram, in which

the topological band insulator, the spin liquid, and the
antiferromagnetic insulator are identified.
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