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We communicate results on correlation functions for the spin-1=2 Heisenberg chain in two particularly

important cases: (a) for the infinite chain at arbitrary finite temperature T, and (b) for finite chains of

arbitrary length L in the ground state. In both cases we present explicit formulas expressing the short-

range correlators in a range of up to seven lattice sites in terms of a single function ! encoding the

dependence of the correlators on T (L). These formulas allow us to obtain accurate numerical values for

the correlators and derived quantities like the entanglement entropy. By calculating the low T (large L)

asymptotics of ! we show that the asymptotics of the static correlation functions at any finite distance are

T2 (1=L2) terms. We obtain exact and explicit formulas for the coefficients for up to eight sites.
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Until about ten years ago it was widely believed that it
would be practically impossible to calculate the lattice
correlation functions of the Heisenberg-chain explicitly,
despite the fact that its Hamiltonian

H N ¼ J
XL
j¼1

~�j ~�jþ1 (1)

is one of the best known among those integrable lattice
systems whose spectrum can be exactly calculated by
means of the Bethe ansatz [1]. Starting from about the
year 2000, however, our understanding of the model has
changed profoundly.

The recent progress is due to several different but related
methods, like the representation theory of quantum alge-
bras, the algebraic Bethe ansatz, or the advent of new
functional equations, which first of all led to the derivation
of multiple integral representations [2] for the elements of
the density matrix. In a series of works [3,4] it was then
shown that the correlation functions of an inhomogeneous
version of the model can be represented by algebraic
expressions of a single function of two variables.

An exponential formula for the reduced density matrix
was obtained in [5]. This formula will be of particular
importance below, since it is also valid for finite tempera-
ture or finite length as was conjectured in [6]. In [7] a
fermionic structure on the space of local operators was
identified from which a generating function of all local
correlation functions was obtained [8] for a very general
inhomogeneous vertex model including the finite tempera-
ture and the finite length Heisenberg chain as special cases.
Even in this most general situation the inhomogeneous
correlation functions depend on only two functions [8,9].
Apart from these important theoretical findings many results
for the ground-state correlation functions in the thermody-
namic limit, but also a number of finite temperature or finite

length correlation functions were obtained explicitly; see,
e.g., [10] and the references therein.
The aim of this Letter is twofold. First, we present recent

exact results for the temperature and size dependence of
two-point correlation functions. Of particular interest are
system parameters T and L in the regime of conformal field
theory (CFT) and their influence on short-ranged correla-
tors that are—strictly speaking—outside the domain of
CFT. Furthermore, we present results for the entanglement
entropy of subsegments of an infinitely long chain in the
entire temperature window from 0 to 1. Second, we ex-
plain the necessary computations in light of a recent under-
standing of the subject [11] based on ‘‘discrete functional
equations’’ which we believe is physically most natural.
A quantum mechanical system at finite temperature T

may be viewed as a classical statistical system on a cylin-
der of circumference � ¼ 1=T. In this way, the density
matrix Dn, encoding all information about the correlation
functions on n successive sites, is obtained in a suitable
limit of the six-vertex model density matrix on a rectan-
gular lattice of unbounded width and finite height N. Each
row corresponds to an imaginary time slice of height
� ¼ �=N, the continuous time limit is obtained in the
Trotter limit N ! 1. For our purposes it is convenient to
have independent heights �1; . . . ; �N (respectively spectral
parameters �1; . . . ; �N placed on the horizontal lines) under
suitable conditions like �j ¼ Oð1=NÞ and P

j�j ¼ �.

We introduce independent spectral parameters x1; . . . ; xn
on the vertical lines corresponding to the n sites picked for
the definition of Dn. The density matrix of the generalized
problem now depends on the xj’s and is denoted by

Dnðx1; . . . ; xnÞ with matrix elements D�1;...;�n
�1;...;�n

ðx1; . . . ; xnÞ.
The full functional dependence will be solved, the subse-
quent specialization of the arguments yields the physically
interesting data. The reason behind the success of this
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solution strategy is the analyticity of the object as a func-
tion of the spectral parameters x. This is a consequence
of the integrability of the system: the eigenstates of the
column-to-column transfer matrices TðxÞ do not depend on
x and hence the eigenvalues and other objects as functions
of x do not show the usual root singularities.

As an example of this solution strategy we would like to
note results for the leading eigenvalue �ðxÞ of the transfer
matrix TðxÞ which will be of use below

log�ðxÞ ¼ e0ðxÞ þ 1

2�

Z
C

logð1þ aðyÞÞ
ðx� y� iÞðx� yÞdy: (2)

Here, C is a narrow closed contour around the real axis, e0
is some elementary function containing the �j parameters.

The function aðxÞ satisfies the nonlinear integral equation

logaðxÞ ¼ a0ðxÞ � 1

�

Z
C

logð1þ aðyÞÞ
1þ ðx� yÞ2 dy; (3)

where a0ðxÞ is an elementary function of x and the �j,

which for finite temperature, in the Trotter limit N ! 1,
takes the form a0ðxÞ ¼ 2J�=ðxðxþ iÞÞ. For the ground-

state and finite size it is simply a0ðxÞ ¼ L logx�i=2
xþi=2 .

The program of calculating the functional dependence of
Dnðx1; . . . ; xnÞ is well understood in the case of zero tem-
perature. For T ¼ 0 the objectDn satisfies nontrivial linear
functional equations in all arguments. The most important
equation, the ‘‘rqKZ’’ equation reads, for instance,

Dnðx1; . . . ; xn�1; xn � 1Þ ¼ Aðx1; . . . ; xnÞDnðx1; . . . ; xnÞ
(4)

where A is a linear operator [4] acting in the space of
density matrices and the xj may take any complex value.

The action of A on Dn is of the following type:

ðADÞ ~�~� ¼ X
~�0; ~�0

A
~�; ~�0
~�; ~�0D

~�0
~�0 : (5)

The functional equations can be solved for the analytical
function D. The uniqueness of the solution for T ¼ 0 is
guaranteed by the asymptotic behavior for xj ! 1. The

finding of [4] is striking, a two-point nearest neighbor
function !ðx1; x2Þ :¼ 6 tr D2ðx1; x2ÞSz1Sz2 and a set of

‘‘structure constants’’ fn;I;J determine the density matrix

Dn for arbitrary n

Dn ¼
X½n=2�
m¼0

X
I;J

�Ym
p¼1

!ðxIp ; xJpÞ
�
fn;I;Jðx1; x2; . . . ; xnÞ: (6)

The summation labels I and J arem-tuples of integers such
that I \ J ¼ ; and I1 < . . .< Im; 1 � Ip < Jp � n. The

structure coefficients fn;I;Jðx1; x2; . . . ; xnÞ are matrices

with elementary rational functions of the arguments
x1; x2; . . . ; xn as entries. For details, see [4].

At zero temperature the computation of the correlation
functions employed two important facts: (i) the functional
equation (4) is satisfied for continuous arguments, and

(ii) Dnðx1; . . . ; xnÞ depends on the arguments only via the
differences xj � xi. This is fundamentally different for

finite temperature, i.e., finite Trotter number N. The main
problem is that (4) no longer holds: on the rhs of (4)
untreatable ‘‘correction terms’’ appear, a serious obstacle
so far for treating T > 0.
At this point, the computation of the density matrix for

finite Trotter numberN on the basis of functional equations
looks unfeasible. However, for the above six-vertex model
with N many rows carrying spectral parameters �1; . . . ; �N
we find [11] a discrete version of functional equations.
In detail, (I) Eq. (4) ‘‘rqKZ’’ holds literally if we restrict
xn to the set f�1; . . . ; �Ng. (II) A reduction takes place in the
limit of large spectral parameter xn, i.e. Dnðx1; . . . ; xnÞ !
Dn�1ðx1; . . . ; xn�1Þ �D1 where D1 is a single site density
matrix of a paramagnetic spin. (III) Analyticity properties:

D
�1;...;�n
�1;...;�n

ðx1; . . . ; xnÞ ¼ P�1;...;�n
�1;...;�n

ðx1; . . . ; xnÞ
�ðx1Þ . . . �ðxnÞ ; (7)

where P�1;...;�n
�1;...;�n

ðx1; . . . ; xnÞ is an n-variate polynomial of
degree N in the variables x1; . . . ; xn and �ðxÞ is the largest
eigenvalue of the transfer matrix TðxÞ obtained from (2).
The computational problem consists in finding the poly-

nomials P�1;...;�n
�1;...;�n

ðx1; . . . ; xnÞ. We have proved [11] that the
above equations have a unique solution. Hence any ex-
pression (or ansatz) forDnðx1; . . . ; xnÞ exhibiting the above
listed properties realizes the solution.
We find that (I) is satisfied by (6) like in [4] with the

same structure coefficients fn;I;J provided that !ðx1; x2Þ is
a symmetric function satisfying the ‘‘discrete functional
equation’’ (see [9] for the most general case)

!ðx1; x2Þ
x2 � 1

þ!ðx1; x2 � 1Þ
xðxþ 2Þ ¼ 3

2ðx2 � 1Þxðxþ 2Þ ; (8)

where x :¼ x1 � x2, x1 is arbitrary and x2 2 f�1; . . . ; �Ng.
The asymptotics (II) is satisfied if !ðx1; x2Þ ! 0 for
x1 ! 1 or x2 ! 1. Condition (III) is satisfied if ! is a
polynomial (of degree N � 1) divided by �ðx1Þ�ðx2Þ.
These conditions for ! characterize a unique function.
It is relatively straightforward to see that the conditions
for ! are satisfied by the following expressions:

!ðx1; x2Þ :¼ 1

2
þ 1

2
ððx1 � x2Þ2 � 1Þc ðix1; ix2Þ

c ðx1; x2Þ :¼ 1

�

Z
C

dy

1þ aðyÞ
Gðy; x1Þ

ðy� x2Þðy� x2 � iÞ
(9)

where the function G satisfies the linear integral equation

Gðx; x1Þ ¼ � 1

ðx� x1Þðx� x1 � iÞ
þ

Z
C

dy=�

1þ aðyÞ
Gðy; x1Þ

1þ ðx� yÞ2 : (10)

Note that the expression in (6) contains rational functions
as prefactors. The poles of these coefficients are canceled
by zeros appearing due to the pairwise cancellation of

PRL 106, 257201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JUNE 2011

257201-2



terms in the sum. Consequently, the only poles
on the rhs of (6) are those occurring in the product
�ðx1Þ . . . �ðxnÞ. Hence, also (III) is satisfied.

Finite temperature.—The coefficients in (6) neither de-
pend on N nor on the parameters �j. These only enter in !

via the dependence of a and G on them. Therefore, taking
the Trotter limit N ! 1 is easy.

The numerical program consists in solving (3) for aðxÞ,
(10) for G, and calculating ! from (9). The definition of
the coefficients in (6) may be found in [4], but an efficient
computation is due to [12]. Here we use their results for
density matrices Dn with n up to 7 sites, and combine this
with the finite temperature results for the function !. The
formulas for Dnðx1; . . . ; xnÞ allow for taking the homoge-
neous limit x1 ¼ . . . ¼ xn ¼ 0 and yield simple algebraic
expressions involving ! and its derivatives.

Just as an illustration of the explicit expressions for the
two-point correlators obtained from Dn for n ¼ 2; . . . ; 8
we show the first cases

h�z
1�

z
2i¼

2

3
ð0;0Þ; h�z

1�
z
3i¼

2

3
ð0;0Þþ2

3
ð1;1Þ�1

3
ð2;0Þ;

h�z
1�

z
4i¼ ð0;0Þ

�
2

3
þ4

3
ð1;1Þþ2

9
ð2;2Þ� 4

27
ð3;1Þ

�

�ð1;0Þ
�
4

3
ð1;0Þþ4

9
ð2;1Þþ 4

27
ð3;0Þ

�
�1

9
ð3;1Þ

þ½4ð1;1Þ�2ð2;0Þ�
�
1

3
þ1

9
ð2;0Þ

�
þ1

6
ð2;2Þ; (11)

where ðj; kÞ :¼ @j1@
k
2!ðx1; x2Þjx1¼x2¼0. The correlators

h�z
1�

z
ni are analytic functions of J=T along the entire real

axis with zero of (n� 1)th order at J=T ¼ 0. In Fig. 1 we
show the results for the antiferromagnetic chain: data at
negative values of J=T correspond to results for the ferro-
magnetic chain at jJ=Tj. In the ferromagnetic case the
correlations are strictly positive, in the antiferromagnetic

case, the correlations are negative (positive) for even
(odd) n.
In [13] the low-temperature behavior of !ðx1; x2Þ was

calculated with the result

! ¼ !0 þ T2

24J2
ð1� ðx1 � x2Þ2Þ cosð�ðx1 þ x2ÞÞ; (12)

where !0 denotes the T ¼ 0 limit of ! in the thermody-
namic limit. From this expansion and (11) we obtain
explicit results for the correlations like

h�z
1�

z
2i ’

1

3
� 4

3
ln2þ 1

36
ðT=JÞ2;

h�z
1�

z
3i ’

1

3
� 16

3
ln2þ 3�ð3Þ þ

�
1

9
� �2

72

�
ðT=JÞ2:

(13)

Similar but more lengthy expressions up to h�z
1�

z
8i have

been derived. These results can be written as

h�z
1�

z
1þri ’ h�z

1�
z
1þri0ð1� �rðT=JÞ2Þ; (14)

where explicit numbers for �r are given in Table I.
For a (primary) field with scaling dimension x the two-

point correlator at distance r is given by

CrðTÞ ¼ C

�
�T=v

sinh�rT=v

�
2x ’ C

r2x

�
1� x

3
ð�rT=vÞ2

�
; (15)

where the sound velocity of the elementary excitations
is v ¼ 2�J. For the spin-spin correlations we have to set
x ¼ 1=2. Hence, the CFT prediction of the coefficient in
(14) is �CFT

r ¼ r2=24. In Table I results for the ratio
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FIG. 1 (color online). Depiction of two-point correlators
h�z

1�
z
ni for different point separations n in dependence on

J=T for antiferromagnetic (ferromagnetic) exchange to the right
(left) of 0.

TABLE I. The low-temperature expansion coefficients �r of
the correlations h�z

1�
z
1þri for r ¼ 1; . . . ; 7 (second row) and the

ratio of �r with the CFT prediction �CFT
r ¼ r2=24 (third row).

1 2 3 4 5 6 7

0.0470 0.1070 0.3268 0.5014 0.9013 1.1957 1.7761

1.1283 0.6419 0.8714 0.7521 0.8652 0.7971 0.8699
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FIG. 2 (color online). Depiction of the entanglement entropies
of Dn as functions of temperature.
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�r=�
CFT
r are given. The values are of the order 1, but

deviate significantly from 1 which we attribute to the
simple form of the CFT prediction (14) which is strictly
valid only for conformally invariant models without mar-
ginally irrelevant perturbations. Also, it is likely that the
sequence �r=�

CFT
r has two different accumulation points

for even and odd r, respectively.
In Fig. 2 we show the entanglement entropies SnðTÞ for

blocks of size n for n ¼ 1; . . . ; 7. Note that we used the
logarithm with base 2 (the total number of local states) in
the definition of the entropy. Hence the high temperature
asymptote of Sn is identical to the length of the block n.
The low-temperature limit scales with 1=3log2ðnÞ.

Finite Size.—Similar to (12) we find in the large L limit

! ¼ !0 þ 1

6L2
ð1� ðx1 � x2Þ2Þ cosð�ðx1 þ x2ÞÞ: (16)

For finite size [6], the physical density matrix is Dn ¼
Dnð1=2; . . . ; 1=2Þ. Hence, all the above formulas for
low T turn into their counterparts for large L if we replace
ð2J=TÞ2 by �L2 leading to

h�z
1�

z
1þri ’ h�z

1�
z
1þri0ð1þ 4�r=L

2Þ: (17)

In contrast to finite temperature, finite size increases the
correlations. In Fig. 3 we show data for chains of length L
up to 128. Note that correlators h�z

1�
z
ni, h�z

1�
z
mi for the

same L coincide if nþm ¼ Lþ 2.
In conclusion, we have derived exact results for corre-

lation functions of the Heisenberg chain for finite tempera-
ture T (finite system size L). In the conformal regime of
low T (large L), the corrections to the ground-state results
in the thermodynamic limit are additive T2 (L�2) terms.

The exponents are universal and agree with CFT predic-
tions. The coefficients for two-point correlators at strictly
finite lattice separation are nonuniversal, but correspond
precisely to those quantities that are of interest in many,
especially numerical approaches. We also managed to
derive multispin correlations and, as an example, we
showed exact data for the entanglement entropy for arbi-
trary temperatures with smooth transitions from T ¼ 0 to
1 with rather different dependence on the length of the
chain segment. The central expression for all (static) cor-
relation functions shows a remarkable structure, it is a sum
of products of nearest-neighbor correlators. We explained
how the central expression for the correlations can be
derived from a set of ‘‘discrete’’ functional equations for
the density matrix. We are convinced that this method is
very powerful and applicable to other seminal models with
higher spins or different symmetry groups.
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[9] H. Boos and F. Göhmann, J. Phys. A 42, 315001
(2009).

[10] N. Kitanine, J.M. Maillet, N. A. Slavnov, and V. Terras, J.
Stat. Mech. (2005) L09002; C. Trippe, F. Göhmann, and
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