
Production of Nonlocal Quartets and Phase-Sensitive Entanglement
in a Superconducting Beam Splitter

Axel Freyn,1 Benoit Douçot,2 Denis Feinberg,1 and Régis Mélin1,*
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Three BCS superconductors Sa, Sb, and S and two short normal regions Na and Nb in a three-terminal

SaNaSNbSb setup provide a source of nonlocal quartets spatially separated as two correlated pairs in Sa
and Sb, if the distance between the interfaces NaS and SNb is comparable to the coherence length in S.

Low-temperature dc transport of nonlocal quartets from S to Sa and Sb can occur in equilibrium, and also

if Sa and Sb are biased at opposite voltages. At higher temperatures, thermal excitations result in

correlated current fluctuations which depend on the superconducting phases �a and �b in Sa and Sb.

Phase-sensitive entanglement is obtained at zero temperature if Na and Nb are replaced by discrete levels.
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Regarding the manipulation of entangled states, quan-
tum nanoelectronics is on the way to address the same
fundamental issues with electrons as quantum optics does
with photons. An entangled quantum state has a density
matrix distinct from that of any ‘‘hidden-variable’’ theory.
Two-particle entanglement can be probed [1] via the vio-
lation of the Bell inequality [2]. Multiparticle entangle-
ment also has a high potential, for instance it [3] can be
used to implement error correction codes.

Concerning superconductivity, two-particle entangle-
ment can be generated at normal metal-superconductor
N-S-N interfaces, by extracting a split Cooper pair from
the BCS condensate of electron pairs [4–7]. We show in
this Letter that a nanoscale three-terminal superconducting
setup can produce nonlocal quartets separated as two pairs
in different electrodes, therefore opening a route for a new
generation of entanglers which could be controlled by an
electromagnetic field. One must stress that here quartets
are absent in the bulk superconductors which instead carry
ordinary BCS pairing. This is in contrast with the destruc-
tion of the ‘‘ordinary’’ pair condensate in certain arrays of
Josephson junctions [8], and its relationship with topologi-
cal quantum computation [9,10]. Microscopically, nonlo-
cal quartet transmission appears here as a generalization of
so-called Cooper pair splitting at a doubleN-S-N interface,
and it can be characterized by interference and noise.
Recall that an Andreev pair in a normal metal electrode
N results from the emission of a charge 2e from S at a N-S
interface, by the process of Andreev reflection (AR). At a
double N-S-N interface, spin-entangled [11] or energy-
entangled [12] pairs can be produced through crossed (or
nonlocal) Andreev reflection (CAR) [13–15] involving
evanescent quasiparticle states in S, on the coherence
length �S. CAR coexists with normal transmission through
S without electron-hole conversion (elastic cotunneling
EC) [16]. CAR or EC can be selected by their different

Coulomb interaction energy [17], by their spin sensitivity
[6,16], by their distinguishing energy dependence [18], or
by their different signature in the nonlocal conductance
and in the zero-frequency shot noise cross-correlations
[5,11,19,20]. The new effects considered here do not re-
quire more advanced technology than the experiments on
split pairs already realized with metallic structures [13] or
with quantum dots [14].
In this Letter, a route to the production of nonlocal

quartets is proposed on the basis of bunching of two
Andreev pairs in a superconducting beam splitter made
of conventional BCS superconductors. Indeed, two
Josephson junctions separated by a distance dS of the order
of the coherence length �S of S can be coupled by nonlocal
coherent effects [21]. Here we study microscopically
all the possible nonlocal effects and discuss their
physical consequences. Remarkably, in a three-terminal
SaNaSNbSb structure, nonlocal quartets can be separately
transmitted as two correlated pairs in Sa and Sb. Nonlocal
quartet transmission proceeds through double crossed
Andreev reflection (dCAR), which coexists with double
elastic cotunneling (dEC). The latter process yields Cooper
pair transmission between Sa and Sb [22]. The phase-
sensitive dCAR is a new coherent nonlocal quantum chan-
nel, which has no direct analog for incoherent multiple
Andreev reflections [23]. The elementary charges involved
in dCAR and dEC are doubled as compared to CAR and
EC. The four processes of CAR, EC, dCAR and dEC (see
Fig. 1) will be treated on an equal footing [24], as well as
AR at each of the Sa-Na-S or S-Nb-Sb interfaces which
transfers Cooper pairs between S and Sa or Sb.
Cooper pair splitting in a SaNaSNbSb structure with

arbitrary interface transparency can be described by gen-
eralizing the Andreev–Kulik–Saint-James bound states
(ABSs) [25–28]. Those states are coherent superpositions
of electrons and holes, forming in a short single channel

PRL 106, 257005 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JUNE 2011

0031-9007=11=106(25)=257005(4) 257005-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.257005


junction a doublet at opposite energies (E�, Eþ), and
carrying Josephson currents in opposite directions. In the
SaNaSNbSb setup, the phases of Sa, Sb, and S being �a,
�b, and �S, and taking the bias voltages Va, Vb to be zero,
the total currents Ia, Ib are given at zero temperature T ¼ 0
by Iað�a;�bÞ � ð2e=@ÞPn¼1;2ð@En=@�aÞ, Ibð�a;�bÞ �
ð2e=@ÞPn¼1;2ð@En=@�bÞ. The En are the energies of the

ABSs formed by hybridizing the ABSs of both junctions
through dCAR and dEC. They depend on both phase
differences ��a ¼ �a ��S and ��b ¼ �b ��S. If
dS & �S, this leads (at lowest order in the dCAR and
dEC processes) to Ia ¼ I0að��aÞ þ IdECð��a � ��bÞ þ
IdCARð��a þ ��bÞ and Ib ¼ I0bð��bÞ � IdECð��a �
��bÞ þ IdCARð��a þ ��bÞ. Production of nonlocal
quartets (dCAR) and pair transmission (dEC) couple the
coherent dc Josephson currents in Sa and Sb by the inverse
crossed inductances ðL�1Þa;b ¼ @Iað�a;�bÞ=@�b and

ðL�1Þb;a ¼ @Ibð�a;�bÞ=@�a, which is an extension of

the concept of crossed conductances in a NaSNb structure.
Voltages Va, Vb are applied now on the electrodes Sa, Sb

(VS ¼ 0 is the reference voltage). Yet a dc Josephson
current can flow from S to Sa and Sb if dS��S [29],
in addition to the standard ac Josephson currents. The
intensity of this current can be seen as a synchronization
of the phases of the ac oscillations. Indeed, considering
for simplicity low transparency contacts, the double

Josephson junction is described by the Hamiltonian H ¼
H loc þ H dCAR þ H dEC þ 2eðn̂SVS þ n̂aVa þ n̂bVbÞ,
with H loc ¼ �EJfcos½��aðtÞ� þ cos½��bðtÞ�g, and
H dCAR ¼ �EdCAR

J cos½��aðtÞ þ ��bðtÞ�, H dEC ¼
�EdEC

J cos½��aðtÞ � ��bðtÞ�. The currents are obtained
from Hamilton equations, for instance:
�
@

2e

�
IaðtÞ ¼ EJ sin½��aðtÞ� þ EdCAR

J sin½��aðtÞ þ ��bðtÞ�
þ EdEC

J sin½��aðtÞ � ��bðtÞ�: (1)

Applying opposite voltages Va ¼ �Vb � V leads to a
dc Josephson effect for nonlocal quartets because the
phase combination ��aðtÞ þ ��bðtÞ ¼ eðVa þ VbÞt=@þ
��a þ ��b is then time independent. The Josephson ef-
fect for nonlocal quartets becomes ac only if the energy
eVa þ eVb acquired by the quartet when separately trans-
mitted into Sa and Sb is finite. This result holds for any
transparency.
The dc Josephson effect for nonlocal quartets is further

considered for a SanSpSb junction biased at opposite volt-
ages, where the previous Na and Nb metals have been
replaced by n- and p-doped semiconductors. The conduc-
tion band edge on one side (n type) and the valence band
edge on the other (p type) are at zero energy. The gaps in the
density of states of the n- and p-doped semiconductors filter
the processes with positive energies in n, and with negative
energies in p [18] [Fig. 1(c)]. This excludes both the local
Josephson effect and the nonlocal dEC, thus leaving at
T ¼ 0 only the nonlocal dCAR as a coherent coupling
between the condensates [30]. In this ideal situation, one
obtains a perfect superconducting beam splitter operating at
the scale of the coherence length, and producing correlated
pairs of Cooper pairs flowing in the leads Sa and Sb. Notice
again that the biases Va and Vb should be opposite in the
coherent Josephson regime, while they are equal in a normal
beam splitter NaNNb or a Cooper pair splitter NaSNb,
where quasiparticles are emitted instead of pairs.
Let us now discuss the noise cross-correlations in a

SaNaSNbSb structure. Zero-frequency thermal noise is
present in the absence of applied voltage for sufficiently
transparent single junctions [31,32]. Finite values are ob-
tained for all the components of the correlators Si;jðtÞ ¼
h�Iiðtþ t0Þ�IjðtÞi, where �Ik is the current fluctuation

in Sk (k ¼ a, b). This equilibrium noise, due to thermally
activated fluctuations between ABSs carrying opposite
currents, is phase sensitive because the population of qua-
siparticles in thermal equilibrium exchanges chargewith the
condensate. The thermal noise can be very large for a long
inelastic lifetime of the ABSs [31,32]. CAR and EC lead to
components SCARa;b and SECa;b of Sa;b, which are independent of

��a and ��b. They correspond to CAR and EC assisted by
thermal activation over the gap � (Fig. 1). On the contrary,
dCAR and dEC result in thermal fluctuations between
hybridized ABSs. dCAR corresponds to random emission
and absorption of nonlocal quartets between S and Sa, Sb.
dEC corresponds to random transmission of pairs between

FIG. 1 (color online). Panel (a) shows a SaSSb structure, where
Na and Nb have not been represented for clarity. The processes
taking place in three-terminal SaNaSNbSb [panel (b)] and
SanSpSb [panel (c)] structures are as follows: double crossed
Andreev reflection (dCAR, red long dashed lines) producing a
nonlocal quartet (a spatially separated pair of pairs), double
elastic cotunneling (dEC, dotted black lines) exchanging pairs
between Sa and Sb, and crossed Andreev reflection (CAR),
thermally activated above the gaps of Sa and Sb. In addition,
elastic cotunneling (EC) and local Andreev reflection (AR), not
shown in the figure, also take place in SaNaSNbSb. With suitable
gate voltages, the n- and p-doped semiconductors on panel (b)
have a vanishingly small density of states at negative and
positive energies, respectively. They filter CAR and dCAR,
and eliminate EC, dEC, and AR.
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Sa and Sb. The contributions S
dCAR
a;b and SdECa;b of dCAR and

dEC to Sa;b depend, respectively, on the phase combinations

��a þ ��b and ��a � ��b. Generalizing Refs. [31–33],
the zero-frequency noise cross-correlations Sa;b in the ab-

sence of applied voltage is written as

Sa;b ¼ e2

�@2
X
n

1

coshðEn=2kBTÞ
@En

@�a

@En

@�b

; (2)

where the lifetime of the Andreev states 1=� shows the
relevance of pair-breaking effects in the superconductor
[21]. Such noise correlations could be large at temperatures
T� comparable to the ABS energy level difference. The
crossover temperature T� is strongly reduced as the inter-
face transparency increases.

Calculations of the equilibrium nonlocal inverse
inductance ðL�1Þa;bð��a; ��bÞ and cross-correlations Sa;b
ð��a; ��bÞ are based on microscopic Nambu-Keldysh
Green’s functions [29] in which the interfacial hopping
amplitude is accounted for by a self-energy. Arbitrary val-
ues of the temperature and of the normal-state transmission
coefficient TN can be treated in equilibrium because the
time convolutions in the Dyson equations then simplify into
products of Green’s function depending only on energy. The
microscopic calculations carried out for a three-dimensional
ballistic superconductor apply to a voltage range in which
the proximity effect is negligible. Sa;b goes to zero at T ¼ 0
because it is thermally activated over the ABS gap. ðL�1Þa;b
saturates at low T to the zero-temperature response of
the condensate. As seen from perturbation theory in the
tunnel amplitudes, both dCAR and dEC contribute with
a positive value to Sa;bð��a ¼ 0; ��b ¼ 0Þ. Thus, for tun-
nel contacts, Sa;bð��a ¼ 0; ��b ¼ 0Þ is positive at the

small T=� ¼ 0:1 [see Fig. 2(b)]. The oscillations in

�ðL�1Þa;bð��a; ��bÞ [Fig. 2(a)] match those of

Sa;bð��a; ��bÞ [see Fig. 2(b)]. They reflect the distinguish-
ing phase dependences of dCAR and dEC. Increasing TN

has the effect of favoring the transmission of pairs by dEC
from Sa to Sb (or from Sb to Sa), and disfavoring their
transmission as a pair of holelike quasiparticles by dCAR.
The cross-shaped variations of ðL�1Þa;bð��a; ��bÞ and

Sa;bð��a; ��bÞ for intermediate TN can be understood

from the bound state energy level minima in the (��a,
��b) plane for ��a, ��b 2 f0; �; 2�g.
This superconducting beam splitter also generates entan-

glement between pair numbers in the two branches, as pairs
are emitted two by two. Indeed a split Josephson current due
to nonlocal quartets connects coherently pair number states
jNaijNSijNbiwith states jNa þ 1ijNS � 2ijNb þ 1i, entan-
gling the added pairs in Sa and Sb [29]. To illustrate this, let
us replace the N junctions by quantum dots Da, Db. Indeed
phase-sensitive entanglement is obtained in a SaDaSDbSb
structure biased at voltages Va ¼ �Vb � V larger than �,
with�S � �, eV. In a first step,Da andDb are supposed to
carry spin-degenerate orbitals. In addition, the gate voltages
are such thatDa (Db) has a level at eVa (eVb) but no level at
�eVa (� eVb). Quasiparticles are transmitted from Sa to
Da (from Sb toDb) but local Andreev processes betweenDa

and S (Db and S) are not possible. In the limit of large gaps,
three terms contribute to the effective Hamiltonian of the
two coherently coupled levels at energies eVa (in Da) and
eVb (in Db): (i) The exchange of pairs between Sa and Da

(Sb and Db): H AR;aðbÞ ¼ ��½expði�aðbÞÞcyaðbÞ;"cyaðbÞ;# þ
H:c:�. (ii) Cooper pair splitting: H CAR ¼ ��½cya;"cyb;# þ
cyb;"c

y
a;# þ H:c:�. (iii) Production of nonlocal quartets:

H dCAR ¼ ��½cya;"cya;#cyb;"cyb;# þ H:c:�. Exact diagonaliza-

tions of H AR;a þH AR;b þH CAR þH dCAR result in

an entangled ground state characterized by a positive con-
currence, which depends on the values of ��a and ��b via
the combination ��a þ ��b typical of dCAR [29]. The
Coulomb interaction Hamiltonian is H U ¼ Un̂aðbÞ;"n̂aðbÞ;#,
with n̂aðbÞ;	 the number of spin-	 electrons in dot a (in

dot b). AsU increases, the zero-temperature concurrence of
the ground state remains finite because of virtual excitations
coupling to dCAR.
Entanglement can also be more directly assessed by

showing that no classical correlation can account for
the crossed noise of nonlocal quartets. Let us consider
SaDaSDbSb or SapSnSb setups, biased at opposite Va

and Vb larger than �, and with �S � �, eV
[assumption (A1)]. The notation hNaðt; 
Þi� stands for the

average number of electrons transmitted into electrode
Sa in the time interval [t, tþ 
]. The average over the
hidden-variable density matrix � ¼ R

d��að�Þ � �bð�Þ is
noted h	 	 	i� [11]. We make the assumption (A2) that each

subsystem a and b is separately described by quantum
solid-state physics: only communication through S corre-
sponds to a hidden variable. The assumption (A2) leads to
h�Naðt; 
Þ�Nbðt; 
Þiqu ¼ h�Naðt; 
Þ�Nbðt; 
Þi�, with

FIG. 2 (color online). The plots show �ðL�1Þa;b [panels (a),
(c), (e)] and Sa;b [panels (b), (d), (f)] as a function of (��a, ��b)

for T=� ¼ 0:1, TN ¼ 4
 10�4 [panels (a),(b)], TN ¼ 0:64
[panels (c), (d)] and TN ¼ 1 [panels (e), (f)]. The ratio �=�S ¼
0:1 is used.
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h�Naðt;
Þ�Nbðt;
Þi� ¼
Z
d�fð�Þh�Naðt;
Þi�h�Nbðt;
Þi�;

(3)

where fð�Þ is the probability density of the hidden variable
�. The value of �Naðt; 
Þ for the specific value � of the
hidden variable is denoted by h�Naðt; 
Þi�.

An additional assumption (A3) concerning the setup is
made in order to simplify the discussion: the gap �S is
larger than the bandwidthW of the superconductors Sa and
Sb, and the linewidth broadening in S is �S ¼ 0. The three
assumptions (A1), (A2) and (A3) imply that charge trans-
port is blocked at any temperature because the Da and Db,
or the n and p energy filters [assumption (A1)], suppress
all Josephson processes taking place locally within
each subsystem a or b for any realization of the hidden
variable � [assumption (A2)]. No quasiparticle is trans-
mitted from S to Sa (from S to Sb) within subsystem a (b)
for any value of � [assumption (A3)]. The equality
h�Naðt; 
Þ�Nbðt; 
Þiqu ¼ 0 is then obtained because

h�Naðt; 
Þi� ¼ h�Nbðt; 
Þi� ¼ 0. The following two state-
ments are in conflict: (i) The cross-correlations are finite;
and (ii) The nonlocal processes is a classical communica-
tion (related to some hidden variables) rather than the
quantum mechanical CAR, dCAR.

For the SanSpSb structure considered above, the cross-
correlations are vanishingly small at zero temperature and
the Bell-like argument does not imply entanglement in this
case. Indeed, the ground state of a Josephson junction is
entangled only if the total number of pairs is fixed [29].
However, the denomination phase-sensitive entanglement
is appropriate at zero temperature for the SaDaSDbSb
structure because the cross-correlations are finite at
T ¼ 0, and the Bell-like argument is in agreement with
the direct calculation of the concurrence, being also finite.

To conclude, we propose to generate nonlocal quartets in
the solid state, by producing correlated pairs in a super-
conducting beam splitter involving three superconductors.
The nonlocal inductance and the phase-sensitive thermal
cross-correlations may be probed in future experiments. Of
particular interest is the possibility to obtain entanglement
at zero temperature from current-current cross-correlations
in a SaDaSDbSb structure. Nonlocal Shapiro steplike ex-
periments are also promising for investigating dCAR and
dEC, in the sense that resonances due to dCAR or dEC
could be obtained if the ac voltage oscillations are syn-
chronized in two incoming channels Sa and Sb.
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