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We develop a hydrodynamic description of the resistivity and magnetoresistance of an electron liquid in

a smooth disorder potential. This approach is valid when the electron-electron scattering length is

sufficiently short. In a broad range of temperatures, the dissipation is dominated by heat fluxes in the

electron fluid, and the resistivity is inversely proportional to the thermal conductivity, �. This is in striking

contrast to the Stokes flow, in which the resistance is independent of � and proportional to the fluid

viscosity. We also identify a new hydrodynamic mechanism of spin magnetoresistance.
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Hydrodynamics accurately describes most liquids at
length scales long compared to the particle-particle
mean-free path, ‘, but it is rarely relevant to the electron
liquid in solids. A hydrodynamic description is based on
the existence of slow variables associated with conserved
quantities, while neither the momentum nor the energy
of the electron liquid in a solid is conserved; electron-
impurity (ei) and umklapp scattering violate momentum
conservation and electron-phonon (ep) scattering degrades
both the momentum and energy of the electron fluid.
Consequently, even in relatively clean systems such as
the electron gas in a semiconductor, the kinetics are typi-
cally described by the Boltzmann equation, and the con-
ductivity is related to the corresponding momentum
relaxation lengths, ‘ei and ‘ep [1].

However, there are circumstances in which the electron
fluid in a semiconductor device, especially when it has
very high mobility and is moderately strongly correlated,
rs > 1, exhibits a range of temperatures and sample
purity where the electron-electron mean-free path, ‘ee is
small compared to the length scales over which mo-
mentum conservation is violated, ‘ee � ‘ei and ‘ee � ‘ep.

Moreover, under most circumstances, umklapp scattering
is negligible. In this regime, the electron fluid attains local
equilibrium on the length scale ‘ee, which is short com-
pared to the scales at which the conservation laws break
down, so the dynamics of the electron fluid can be treated
hydrodynamically. In this Letter, we develop a theory of
electron transport in the hydrodynamic regime.

Linear resistance of a solid object to a hydrodynamic
flow was considered by Stokes long ago [2]. In this case the
resistance is proportional to the first (shear) viscosity of
the liquid �, and independent of the second viscosity � and
the thermal conductivity �, regardless of the compressibil-
ity of the liquid. The latter property can be traced to the fact
that the Stokes flow is isentropic; i.e., the equilibrium
entropy density of the fluid outside the obstacle is coor-
dinate independent. In the case of strongly correlated
electronic systems this is generally not the case. In the

equilibrium state in the presence of a random potential the
entropy per electron, s0ðrÞ, is inhomogeneous, and conse-
quently electron flow cannot be isentropic. We show below
that in this case the resistance depends on all the kinetic
coefficients: �, � , and �. Moreover, in the ideal fluid limit,
�, � ! 0, the resistivity diverges as 1=�, in contrast to the
well known D’Alembert’s paradox in Stokes flow. We also
show that in the hydrodynamic regime the system exhibits
a strong spin-dependent magnetoresistance.
While in the present Letter we will not analyze any

explicit experimental system, there are reasons to believe
that our theoretical results may be relevant to existing
experiments involving the highly correlated electron gas
in semiconductor heterostructures. Recently, low density
two-dimensional electronic systems with high mobility
have become available, in which rs ¼ V=EF � 1 and
the conductivity is relatively high even at low tempera-
tures. (V is the characteristic energy of Coulomb interac-
tion, and EF is the bare Fermi energy.) These systems
exhibit unusual temperature and magnetic field depen-
dencies of the resistance. (See Refs. [3–5] for a review.)
If rs > 1 at T � EF the electron-electron mean-free path is
as short as an interelectron distance so the hydrodynamic
approach should be applicable so long as the correlation
length of the scattering potential �, is large compared to the
spacing between electrons. (There are even indications that
the hydrodynamic regime can be realized in GaAs
MOSFET’s at temperatures as high as 300 K [6,7].)
Having in mind the linear resistivity we use the Stokes

approximation, which neglects the nonlinear terms in
the hydrodynamic velocity. In the absence of external
magnetic field, setting all time derivatives to zero (the
stationary case), the Stokes equations for a charged fluid
in the presence of an external potential are

0 ¼ r � j; (1a)

0 ¼ n�1
0 ð@k�0

ik � @i ~PÞ � ðeEi þ @i ~UÞ; (1b)

0 ¼ Tj � rs0 þ divQ: (1c)
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Here, T, n0, and s0 denote, respectively, the temperature
and position-dependent particle density and entropy per
particle in equilibrium state; j is the particle current den-
sity; the electron charge is �e and E is the homogeneous
external electric field. The linear in j corrections to equi-
librium quantities are indicated by the tilde sign: ~P and ~U
are the current-induced pressure and self-consistent poten-
tial. The latter is related to the nonequilibrium particle
density, ~n, by the Poisson equation. The dissipative heat
flux, Q, and the viscous stress tensor, �0

ik, are given by

�0
ik ¼ �

�
@kvi þ @ivk � 2

d
�ik@lvl

�
þ �@lvl; (2a)

Q ¼ ��r ~T: (2b)

Here, v ¼ j=n0 is the hydrodynamic velocity, d the dimen-
sionality of space, and ~T is the nonequilibrium correction
to the temperature due to the flow. The hydrodynamic
description of the resistivity is fully determined by
Eqs. (1) and (2), augmented by the equation of state and
the Poisson equation. The latter determine the spatial
distribution of equilibrium density n0ðrÞ and entropy
s0ðrÞ, which are presumed known below.

To compute the resistivity � one should solve Eqs. (1)
and (2) and find the current response to the external electric
field. Alternatively, for a given distribution of the current
and temperature, the resistivity can be determined by
equating the Joule heat, �e2hji2, to the dissipation rate of
mechanical energy

�e2hji2 ¼
�
� 1

T
Q � r ~T þ �0

ik@kvi

�
; (3)

where h. . .i � R
. . . ddr=

R
ddr denotes averaging over

space. This method is more convenient for perturbation
theory and we will use it in this Letter.

Let us begin with the simplest case of flow in one
dimensional (1D) wire. The continuity Eq. (1a) requires
the current density to be uniform, j ¼ hji ¼ const, while
the hydrodynamic velocity is given by v ¼ hji=n0. It fol-
lows from Eqs. (1c) and (2b) that the total heat flux q ¼
Tjs0 � �@x ~T is uniform (independent of x). Its value is
established from the condition that the average temperature
gradient vanishes, yielding h1=�iq ¼ ½Ths0=�i�j. (In other
words, the Peltier coefficient is� ¼ �Q=ej ¼ �ðT=eÞ�
hs0=�i½h1=�i��1.) The temperature gradient is given by
@x ~T ¼ ðT=�Þ�s0j, where �s0�½s0h1=�i�hs0=�i�=h1=�i.
Substituting these expressions into Eq. (3) we obtain for
the resistivity

�1D ¼ 1

e2

�
T

�
ð�s0Þ2 þ �

�
@x

1

n0

�
2
�
: (4)

This equation assumes smooth variation of the disorder but
does not assume smallness of the relative variations of s0
and n0 and is valid in the case when the thermal conduc-
tivity and viscosity are also position dependent.

The first term in Eq. (4) depends on the amplitude of
spatial variations of s0ðrÞ rather than their gradient.
Therefore, for any given set of fluid parameters, the resis-
tivity is dominated by thermal conductivity for a suffi-
ciently smooth potential.
Another remarkable feature of Eq. (4) is that its first term

is inversely-proportional to the thermal conductivity. This
implies that for an ideal fluid � ! 0 the resistivity diverges,
� ! 1. A qualitative explanation of the phenomenon is as
follows. In equilibrium the entropy per electron s0ðrÞ de-
pends only on the fluid density and becomes inhomoge-
neous in the presence of an external potential. The flow of
an ideal fluid is adiabatic and preserves the original entropy
per particle. As a result the density dependence of the
pressure will be different in different elements of the fluid.
An adiabatic displacement of such a fluid from its equilib-
rium configuration will induce temperature gradients. The
density change due to thermal expansion will create a
restoring force, which is proportional to the displacement
of the fluid, rather than to the gradient of the displacement.
Consequently, at � ¼ 0 1D adiabatic flow is impossible in
linear response. This argument shows that the resistivity
also diverges at � ! 0 in two dimensions. It is easy to see
from Eqs. (1c) and (2b) that adiabatic flow (� ¼ 0) is
allowed only along contours of constant s0, of which only
a set of measure zero percolate across the system in 2D.
Equation (4) is consistent with the result of a micro-

scopic calculation of the resistivity of a 1D system of
weakly interacting electrons, Eq. (68) of Ref. [8].
Let us now consider the resistivity in two dimensions

(2D). In contrast to the 1D flow, in 2D current conservation
does not uniquely determine the spatial dependence of the
current density. It only implies that the latter can be ex-
pressed as j ¼ hji þ ẑ� rc , where ẑ is a unit vector
perpendicular to the plane of flow, and the function c
describes spatial variations of the stream function [2].
The problem simplifies in the regime where the disorder

potential is weak so that perturbation theory can be ap-
plied. In this case the relative fluctuations of equilibrium
density and entropy are small and the viscosities and
thermal conductivity may be assumed to independent of
coordinates. Let us assume that the spatial fluctuations of
the current density are much smaller than the average
jrc j � jhjij. In this case the gradients of the hydrody-
namic velocity and temperature are linear in the inhomo-
geneity,

@ivk ¼ hjki@iðn�1
0 Þ; r ~T ¼ T

�
hji�s0: (5)

Substituting these expressions into Eq. (3) we obtain for
the resistivity in the 2D case,

�2D ¼ 1

2e2

�
T

�
ð�s0Þ2 þ ð�þ �Þ

�
r 1

n0

�
2
�
: (6)

Although this expression looks similar to the 1D result,
Eq. (4), this formula is applicable only to weakly
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inhomogeneous flows. Therefore all kinetic coefficients
are coordinate independent and correspond to those of the
disorder-free state, and �s0 ¼ s0 � hs0i. The origin of the
first two terms in Eq. (6) is the same as that in
Eq. (4). The additional factor of 1=2 corresponds to
the inverse number of dimensions. It arises because only
the gradients of s0 and n0 along the flow contribute to the
resistance. The term containing the shear viscosity � in
Eq. (6) arises because in 2D the inhomogeneous part of the
hydrodynamic velocity contains shear flow.

It is interesting to compare this expression with the
classical expressions for the resistance to a flow past a
set of fixed objects. In this case, rather than the smoothly
varying disorder we have treated, one considers the hydro-
dynamic flow in the presence of spatially sharp objects,
along the surface of which ‘‘stick’’ boundary conditions
(vðrÞ ¼ 0) are applied on the hydrodynamic velocity.
Under these conditions, the Stokes formula for the resist-
ance produced by a set of macroscopic objects embedded
into a 2D liquid is

�� 1

e2
�Ni

n2j lnR2Nij
: (7)

HereNi is the concentration of objects andR is their radius.
Clearly, this expression is similar to that obtained from the
second term in Eq. (6), although our expression contains
the sum (�þ �), while Eq. (7) contains only �. However,
more importantly, as in the 1D case, when the disorder is
sufficiently smooth, the resistance is dominated by the
thermal conductivity contribution, described by the first
term in Eq. (6).

The perturbative result, Eq. (6), applies when the flow
is nearly homogeneous. If the thermal conductivity �
decreases a strongly inhomogeneous flow will develop
even if the equilibrium density is almost uniform,
j�n0=n0j � 1. This is obvious in the � ! 0 limit, where
the linear response flow is possible only along the s0 ¼
const lines. At finite but small thermal conductivity the
current flows primarily in narrow channels localized near
the contours of constant s0 that percolate across the whole
sample. We can estimate the width of the channels x and
hence �2D in this limit by computing the rate of energy
dissipation in Eq. (3) for an assumed value of x and then
minimizing with respect to x. The first term in Eq. (3) may

be estimated as �hji2
hn0i2�2 ð�=xÞ3 and the second as Thð�s0Þ2i

� �
hji2ðx=�Þ2, where � denotes the correlation length of the

disorder potential. Minimizing the sum gives x� ���1=6,
where

� � h�s20iT�2hn0i2
��

� 1: (8)

The corresponding resistivity of the sample is

�2D � 1

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�hð�s0Þ2i
�hn0i2�2

s
¼ �

e2hn0i2�2

ffiffiffiffi
�

p
: (9)

Note that this limit is likely relevant at relatively high
temperatures, when � is small, although not so high that
the inequality 	ee � 	ep is violated. In the opposite limit

� � 1 the flow is nearly homogeneous, and the resistivity
is described by the perturbative result, Eq. (6).
We now consider the generalization needed to explore a

spin mechanism of magnetoresistance. We assume that
the component of spin parallel to an applied field H is
conserved, so the spin per electron, �, is a new hydro-
dynamic variable. For simplicity, we ignore the orbital
effects of the magnetic field.
The hydrodynamic equations in the present case should

be supplemented by the conservation law for spin, which in
the linear in j approximation reads

j � r�0 ¼ �divj�: (10)

Here, �0ðr; HÞ is the equilibrium value of � and j� is the
density of spin current relative to the fluid. The latter
consists of a spin diffusion current and a spin thermocur-
rent induced by the temperature gradients. Conversely, the
heat flux Q acquires an additional contribution in the
presence of nonequilibrium spin density gradients, as re-
quired by the Onsager principle. We can express the heat
and spin currents in terms of the kinetic coefficients and
gradients of temperature and ‘‘spin chemical potential’’

� as

Q
j�

� �
¼ � 1

T

�11 �12

�21 �22

� � r ~T=T
r
�

" #
: (11)

Here, �12ðHÞ ¼ �21ðHÞ and the diagonal elements can be
expressed in terms of the thermal conductivity � and spin
diffusion coefficient D� as �11¼T2�, and �22 ¼ D�.
The expression for the resistivity in terms of the dis-

sipation rate, Eq. (3), must now be replaced with

�e2hji2 ¼
�
�0

ik

@vi

@xk
�Q � r ~T

T
� j� � r ~
�

�
: (12)

In the weakly inhomogeneous regime we have (in vector
notation) ðQ;j�Þ¼�jðT�s0;��0Þ, where��0¼�0�h�0i.
Using Eqs. (11) and (12) we obtain the resistivity

�2D ¼ T

2e2

�
ðT�s0; ��0Þ�̂�1 T�s0

��0

� �
þ �þ �

T

�
r 1

n0

�
2
�
;

(13)

where �̂�1 is the matrix inverse to �̂. The magetoresistance
arises not only from the H dependence of the kinetic coef-
ficients �ðHÞ, �ðHÞ and �̂ðHÞ, but also from the equilibrium
quantities �s0ðHÞ and ��0ðHÞ. Spin polarization by the
magnetic field decreases �s0, thereby decreasing thermal
dissipation. On the other hand, it induces spatial inhomoge-
neity of the convective spin current j�0ðrÞ. This generates
diffusive spin currents, which increase the resistance of the
sample.

PRL 106, 256804 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JUNE 2011

256804-3



The hydrodynamic results are very general—the physics
of the particular electron fluid involved enters only through
the magnitude and functional dependences of the various
kinetic coefficients on the magnetic field and temperature.
In the case of rs & 1, theoretical calculations of these
coefficients are under good control. (See, for example,
Ref. [9].) For T < EF, where Fermi liquid theory applies,
�s0 � ðT=EFÞ�n0=n0, �� � �mE3

F=@T
2‘ee, and ��

E2
F=@T, where m is the electron mass. The first term in

Eq. (6) is on the order @

e2
T4

E4
F

h�n20=n20i and the second term

� @

e2
1

�2n0

E2
F

T2 h�n20=n20i, where � is the correlation length of

the disorder potential. At temperatures close to the Fermi
energy the thermal conductivity contribution in Eq. (4) is
larger than the viscous one by a factor �2n0 � 1, so
�� @

e2
h�n20=n20i. For T > EF, the electrons form a classical

gas, so �s0 � �n0=n0, �� vTT=e
2, �� � �mvTT=e

2,

where vT � ffiffiffiffiffiffiffiffiffiffi
T=m

p
is the thermal velocity. The thermal

conductivity term in Eq. (6) decreases with temperature
� 1

vT
h�n20=n20i and the viscous one increases, � 1

vT
�

h�n20=n20i 1
�2
D�

2 , where �D � n0e
2=T is the inverse Debye

screening length.
In clean systems at T ¼ 0 the electron fluid crystallizes

for large enough values of rs > rðcÞs � 1. In 2D case, the

best estimate of rðcÞs � 40 has been obtained by numerical
simulations under the assumption that there is a direct
transition between the crystal and the liquid states [10].
Although it has been shown [3,4] that, rather than a direct
transition, there must be a sequence of transitions involving
electronic microemulsion phases, it still seems likely that

there is a broad interval rðcÞs > rs � 1, where at T ¼ 0, the
system is in the liquid state. In this case, there is a
more involved hierarchy of crossover scales, since E?

F �
�P � V, where E?

F is the (probably strongly renormal-
ized, E?

F < EF) Fermi energy, �p � EF
ffiffiffiffi
rs

p
is the plasma

frequency at wave vector or order n1=2, and V � EFrs is the
typical interaction energy between electrons. As a result,
there are four characteristic temperature intervals. (i) For
T < E?

F the system is in the Fermi liquid regime, which
behaves as above. (ii) For E?

F < T <�p there is a semi-

quantum regime. While there is no established theory in
this regime, a conjecture concerning the T dependences of

sðTÞ, �, �, and � was put forward in Refs. [3,11,12].
Surprisingly, there also does not appear to be published
experimental data concerning the transport properties of
liquid 3He in the corresponding regime, much less for the
strongly correlated electron liquid. (iii) For �p < T < V

the system is a highly correlated classical fluid, a classic
problem about which much is known empirically, but
which is still a subject of ongoing theoretical debate [13].
(4) For V < T, the system is again weakly interacting
classical plasma.
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