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We study the thermally driven spin state transition in a two-orbital Hubbard model with crystal-field

splitting, which provides a minimal description of the physics of LaCoO3. We employ the dynamical

mean-field theory with a quantum Monte Carlo impurity solver. At intermediate temperatures we find a

spin disproportionated phase characterized by a checkerboard order of sites with small and large spin

moments. The high temperature transition from the disproportionated to a homogeneous phase is

accompanied by a vanishing of the charge gap. With the increasing crystal-field splitting the temperature

range of the disproportionated phase shrinks and eventually disappears completely.
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The pressure or thermally driven spin state transitions
play an important role in the physics of magnetic oxides
[1]. A notorious example is LaCoO3. Its peculiar magnetic
and transport properties have attracted the attention of
physicists for decades, yet the interpretation of its behavior
remains controversial. The main characteristics of LaCoO3

are the temperature (T) dependencies of the magnetic
susceptibility and the conductivity [2,3], which exhibit
three distinct regions: (i) a low-T nonmagnetic insulator,
(ii) an intermediate-T paramagnetic insulator, and (iii) a
high-T paramagnetic bad metal. It is generally believed
that the evolution from the nonmagnetic to the paramag-
netic state is due to thermal population of an excited state
of the Co ion with spin (or spin and orbital) degeneracy.
Commonly considered scenarios involve either low-spin to
high-spin excitation [2,4–6], low-spin to intermediate-spin
excitation, [7] or both [8,9]. Temperature affects the elec-
tronic system also indirectly, by changing the crystal-field
splitting through the lattice thermal expansion. Yet another
piece to the puzzle is the deformation of CoO6 octahedra
and their coupling to the spin states of the Co ion [2,8].
Therefore it is rather difficult to distinguish the leading
effects from the secondary ones.

In this Letter we study a minimal fermionic lattice
model that exhibits the spin state transition. As purely
electronic it does not include the effect of lattice thermal
expansion or the magnetoelastic coupling. The model is a
simplified version of the one studied by Werner and Millis
[10], who used the dynamical mean-field theory [11]
(DMFT) to map out its phase diagram at fixed temperature,
and by Suzuki, Watanabe, and Ishihara [12], who studied
its ground state as a function of doping by variational
Monte Carlo simulations. We employ the DMFT method
to study the temperature-dependent properties in the vicin-
ity of the boundary between the low-spin and high-spin
phases. Unlike Ref. [10] we assume a specific lattice,
which allows us to investigate the ordering tendencies.
We compute the one-particle spectra and the local as

well as the uniform spin susceptibility and find that, similar
to the behavior of LaCoO3, the model exhibits three dis-
tinct temperature regions. In addition to the low-T non-
magnetic insulator and high-T local moment metal we find
a spin disproportionated insulating phase at intermediate
temperatures. In order to interpret the DMFT results we
construct an effective low-energy model, which allows
analytic calculations.
Our starting point is a two-orbital Hubbard Hamiltonian

on a square lattice
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where ayi;�, byi;� (ai;�, bi;�) are the fermionic creation

(annihilation) operators for a spin index � and two types
of orbitals for each lattice site i, and nai;�, n

b
i;� are the

corresponding occupation number operators. The nearest-
neighbor hoppings taa ¼ 0:45 eV, tbb ¼ 0:05 eV and the
on-site interaction parametersU ¼ 4 eV and J ¼ 1 eV are
chosen to yield a broad a band and a narrow b band,
mimicking the electronic structure of LaCoO3. The
crystal-field splitting is denoted with �. The T-dependent
chemical potential � is fixed to yield the average filling of
2 electrons per lattice site. Unlike Ref. [10] we consider
only Ising terms in the on-site interaction.
The context of the present study is set by a conceptual

form [13] of the U-� phase diagram of Ref. [10] shown in
Fig. 1. The boundary of the metallic phase is given by the
opening of a linearly increasing charge gap (indicated by
the color intensity). The line separating the high-spin (HS)
Mott and low-spin (LS) band insulator corresponds to
degeneracy of local HS and LS states. The parameter range
of interest corresponding to small gap LS insulator is close
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to the triple point. In the following we present the results
for� of 3.40 and 3.42 eV (marked with the cross in Fig. 1).
The DMFT equations are solved as described in Ref. [14]
using the strong coupling continuous time quantum
Monte Carlo solver [15]. Guided by proposals of spin
disproportionation in LaCoO3 [2,16] we have doubled

(
ffiffiffi
2

p � ffiffiffi
2

p
) the unit cell to allow for a spontaneous two-

sublattice order (the sublattices are denoted with A and B).
All results presented below are in the paramagnetic phase.
Although we have checked for a 2� 2 antiferromagnetic
order in the disproportionated phase at several tempera-
tures, it was never found stable.

In Fig. 2(b) we show the T-dependent occupancies �naA;B.

Below 500 K a disproportionation takes place. We demon-
strate the typical behavior on the two sublattices by show-
ing the contribution of the local eigenstates to the partition
function and the imaginary time spin-spin correlation func-
tion hszð�Þszð0Þi for the case� ¼ 3:40 eV and T ¼ 290 K.
The A sites, Fig. 2(c), host a statistical mixture of LS (a0b2)
and HS (a1b1) states with short excursions to 1-electron
(a0b1) configuration, which contributes only to the rapidly
decaying part of hszð�Þszð0Þi. The HS weight is strongly
suppressed on the B sites, Fig. 2(d), which host the LS
(a0b2) states with short excursions to 3-electron (a1b2)
configurations. The weight of the HS state translates di-
rectly to the magnitude of the constant part of hszð�Þszð0Þi
and thus to the local spin susceptibility, given byR�
0 d�hszð�Þszð0Þi.
In Fig. 2(a) we show the site-averaged local spin sus-

ceptibility while the site-resolved contributions are pre-
sented in the inset. Comparison to the local spin
susceptibility calculated in the (by constraint) homogene-
ous phase reveals an enhancement of the average HS
abundance due to the disproportionation. We have calcu-
lated also the uniform spin susceptibility. In the dispropor-
tionated phase the uniform susceptibility nearly coincides
with the average local susceptibility, which is a simple
consequence of the local moments on A sites being
separated from each other by the B sites hosting the LS
singlets. In the high-T homogeneous phase the uniform

susceptibility is found to be enhanced over its local coun-
terpart. This is somewhat counterintuitive since a naive
expectation of an antiferromagnetic superexchange be-
tween the neighboring HS excitations should lead to an
opposite effect. The Pauli susceptibility associated with the
bad metallic state, discussed next, is an order of magnitude
too small to provide an explanation.
The evolution of the one-particle spectra is shown in

Fig. 3. The disproportionated phase exhibits a well-defined
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FIG. 2 (color online). (a) The T dependence of the site-
averaged local spin susceptibility (filled circles) for � of 3.40
[gray (red)] and 3.42 (black) eV. The corresponding site-resolved
contributions are shown in the inset. The � ¼ 3:40 eV data are
compared to the uniform susceptibility (diamonds) and the local
susceptibility obtained in the homogeneous phase (empty
circles). (b) The site-resolved occupancy �na (the same color
coding as above). (c,d) The spin-spin correlation functions on
sites A (c) and B (d) for � ¼ 3:40 eV and T ¼ 290 K. (Note the
different intervals on the vertical axis covered in the two graphs.)
The column charts show the contributions of the different local
eigenstates described in the text.
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FIG. 1 (color online). Conceptual phase diagram of the two-
band model for U=J ¼ 4. The size of the charge gap is indicated
by color intensity (white ¼ no gap). The parameters of the
present study are marked with the cross.
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FIG. 3 (color online). The T evolution of the one-particle
spectra for � ¼ 3:40. The spectral densities of different orbitals
are resolved by color: a (black) and b [gray (red)], while the
dashed lines correspond to the B sites and full lines to the A sites.
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charge gap which starts to fill with incoherent excitations
as the system approaches the transition to the homogene-
ous phase. To interpret this behavior we consider the
definition of the charge gap in terms of the eigenenergies
of the system ENþ1 þ EN�1 � 2EN , where EN corresponds
to an eigenstate with a nonvanishing occupancy and ENþ1,
EN�1 are energies of lowest states that can be reached by
adding or removing an electron. At zero temperature the
ground state is a product of LS (a0b2) configurations on
each site. The lowest N þ 1 state corresponds to a single a
electron propagating over the filled b band, while the
lowest N � 1 state corresponds to a single b hole. The
gap is obtained as the on-site contribution reduced by half-
bandwidths U� 5J þ ��Wa=2�Wb=2.

The situation at elevated temperatures is more compli-
cated as the initial states involve also sites in HS configu-
ration as well as sites with one or three electrons. The
disproportionated and the homogeneous phases differ in
the constraints posed on the relaxation ofN þ 1 andN � 1
excitations by the states of the neighboring sites. While in
the homogeneous phase each site has neighbors which
fluctuate into 1- and 3-electron states, in the disproportio-
nated phase fluctuations are either to 1-electron states on A
sites or 3-electron states on B sites. As an example we
discuss the b-electron excitations on an A site from the HS
initial configuration. (The LS initial configurations con-
tribute with a completely filled valence band.) In the dis-
proportionated phase the energy of the lowest N þ 1 state
reached by adding a b electron consists of the on-site
contribution reduced by Wa=2 due to a electron hopping.
The lowest N � 1 state reached by b electron removal
corresponds to (a1b1) configuration on the A site and
(a0b1) configuration on the neighboring B site. The corre-
sponding gap estimate is still finite (U� 2J �Wa=2). In
the homogeneous phase the lowest N � 1 excitation con-
nected with b electron removal is the same as just men-
tioned. For N þ 1 excitations there is an additional
possibility in the homogeneous phase to add the b electron
on a site in the HS state while its neighbor is in the (a0b1)
configuration leading to the (a0b2) final state with (a1b1)
on the neighboring site after a electron transfer.
Considering these excitations we obtain a vanishing
estimate for the charge gap.

To gain insight into the DMFT results we integrate out
the charge fluctuations in (1) to get an effective classical
model with three low-energy states (LS, HS " , HS # ):

~H ¼ �0

X
i;�

nHSi;� þ X
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ð�1n
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i nHSj;� þ �2n

HS
i;�n

HS
j;��Þ: (2)

Here nHSi;� and nLSi are the projectors on the three states, and

hiji denote summation over all oriented nearest-neighbor
bonds. The coupling constants arising from virtual hopping

read �0 ¼ �� 3J, �1 ¼ � t2aaþt2
bb

U�2J , and �2 ¼ � t2aaþt2
bb

UþJ . It

should be pointed out that this model is only good for
qualitative comparison to the DMFT data as the charge

fluctuations are not negligible (in particular in the metallic
phase). A mean-field decoupling of (2) allowing for a two-
sublattice order leads to the free energy per site
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where xA;B are the mean values of nHS" þ nHS# on the two

sublattices. The equilibrium values of xA � xB obtained by
minimization of (3) are shown in Fig. 4 together with the
corresponding uniform spin susceptibility. For�0 > 4�1 we
find a uniform LS ground state at T ¼ 0, which is followed
by a transition into the disproportionated phase character-
ized by xA � xB between temperatures Tc1 and Tc2. With
increasing �0 the Tc1 and Tc2 converge and the dispropor-
tionated phase eventually disappears for large enough �0.
This result shows that the driving for the observed
disproportionation is an attractive superexchange interac-
tion between the HS and LS states depicted in Fig. 2(b).
The disproportionated phase exhibits an enhanced sus-

ceptibility, which has two sources. First, like in the DMFT
results the HS abundance is enhanced with respect to the
homogeneous phase. Second, in the homogeneous phase
the antiferromagnetic coupling �2 reduces the uniform
susceptibility. Note that this is in contrast to the DMFT
results.
The HS-LS model is not new. It was suggested for

LaCoO3 by Raccah and Goodenough [2] and the dispro-
portionation was studied by Bari and Sivardière [17].
However, traditionally the interaction between the
LS and HS state was associated with the magnetoelastic
coupling, namely, a breathing distortion of the CoO6

FIG. 4 (color online). The uniform susceptibility of the clas-
sical model as a function of temperature and the parameter �0.
The inset shows the difference of the HS populations xA � xB as
a function of temperature and �0.
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octahedra. This is quite different from the present work
where the disproportionation is of purely electronic origin.

Finally, we discuss the implications of our results in the
context of LaCoO3. We have shown that physics of
LaCoO3 over the whole temperature range can be qualita-
tively described by purely electronic effects and with only
one local moment state. The simplicity of the present
model lends it generality, but inevitably involves approx-
imations. First, our model has two nondegenerate orbitals
while LaCoO3 is characterized by threefold quasidegener-
ate t2g and twofold degenerate eg orbitals leading to differ-

ent entropic contributions. Nevertheless, the main control
parameters are the coupling constants, and different band
degeneracies have only quantitative effect. Second, the
Co-O bond lengths change due to the normal and anoma-
lous lattice thermal expansion [8]. The latter is caused by
populating the HS state, well-known to weaken the metal
ion-ligand bonds [18,19]. Considering a path of decreasing
�0ðTÞ in Fig. 4 it is clear that the lattice response enhances
the observed effects as a smaller crystal field favors the
disproportionation as well as the metallization. Third, no
disproportionation and corresponding breathing lattice dis-
tortion was observed in recent experiments [8,20]. It is
well-known that mean-field approximations overestimate
ordering tendencies and that a long-range order in the
mean-field solution is often indicative of short-range cor-
relations in the system. Therefore we speculate that in
LaCoO3 dynamical HS-LS correlations take place. It is
plausible that such a dynamical effect can arise from the
instantaneous HS-LS interaction of electronic origin. On
the other hand, for the magnetoelastic HS-LS interaction
the retardation effects due to the lattice dynamics are likely
to weaken dynamical HS-LS correlation considerably.
Fourth, two regions of Curie-Weiss behavior observed in
experiments have been interpreted as evidence for
two different local moment states (high-spin and
intermediate-spin) [9]. In our model we observe different
behaviors of the uniform susceptibility in the disproportio-
nated and in the homogeneous high-T phase. The differ-
ence has three sources: (i) an enhanced abundance of the
HS configurations in the disproportionated phase (over a
hypothetical homogeneous phase at the same T),
(ii) absence of the nearest-neighbor antiferromagnetic cor-
relations in the disproportionated phase, (iii) the metallic-
ity of the homogeneous phase.

In conclusion, we have used numerical DMFTmethod to
study a two-band Hubbard model with quasidegenerate
high-spin and low-spin local states. Varying temperature
we have observed three different regimes: a low-spin

insulator, an insulating phase with HS-LS disproportiona-
tion and enhanced Curie-Weiss susceptibility, and a homo-
geneous metallic phase with Curie-Weiss susceptibility.
We have argued that our model study captures the essential
physics of LaCoO3 and thus that the properties of LaCoO3

can be explained with a single magnetic moment carrying
state and without the effect of the lattice thermal
expansion.
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Note added in proof.—After acceptance of our Letter we

realized that the classical model (2) is equivalent to
the Blume-Emery-Griffiths model [21] with a repulsive
biquadratic term.
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