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Three-wave turbulent interactions and the role of eddy size on the turbulent electromotive force are

studied in a spherical liquid-sodium dynamo experiment. A symmetric, equatorial baffle reduces the

amplitude of the largest-scale turbulent eddies, which is inferred from the magnetic fluctuations spectrum

(measured by a 2D array of surface probes). Differential rotation in the mean flow is >2 times more

effective in generating mean toroidal magnetic fields from the applied poloidal field (via the � effect)

when the largest-scale eddies are eliminated, thus demonstrating that the global turbulent resistivity

(the � effect from the largest-scale eddies) is reduced by a similar amount.
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The magnetic fields of stars and planets are generated by
the dynamo effect—a magnetohydrodynamic instability in
flowing conducting fluids that converts kinetic flow energy
into magnetic energy. Experimental demonstrations of dy-
namos have been achieved in heavily constrained flows
[1,2] as well as in simple roll flows with nonuniform
magnetic diffusivities [3].

Magnetic field dynamics are governed by the magnetic
induction equation

@B

@t
¼ Rmr� ðv� BÞ þ r2B; (1)

where Rm ¼ �0av=� is the magnetic Reynolds number
with a the system scale, v the characteristic velocity, and �
the resistivity. Time is scaled to the resistive diffusion time
�� ¼ �0a

2=�. A magnetic field can be generated from a

flowing liquid metal or plasma when advection dominates
diffusion sufficiently to amplify magnetic perturbations
(Rm � 1) and when the flow geometry provides a feed-
back mechanism to facilitate instability.

A key component of most dynamo theories is that corre-

lated fluctuations of velocity and magnetic fields (~v and ~b,
respectively) can generate, on average, a turbulent electro-

motive force h~v� ~bi that drives a mean-field current. This
effect is often quantified in terms of transport coefficients

� and� such that h~v� ~bi ¼ �hBi � �r� hBi, where the
brackets denote a time average [4].

The effective resistivity for turbulent flows is enhanced
by the magnetic flux transport and mixing by eddies. By
assuming isotropic and homogeneous turbulence, zero
mean flow, and scale separation between the small turbu-
lence and the system-scale magnetic field, the mean-field
theory shows that the enhanced resistivity can be charac-
terized as �eff ¼ �þ �turb with �turb � 1

3Rmturb� [5].

Here we have defined a turbulent magnetic Reynolds

number Rmturb � �0 ~v‘=�, where ~v is the rms velocity
fluctuation level and ‘ ¼ ~v�corr is the characteristic scale
length of the eddies. This turbulent resistivity is often the
dominant contribution in astrophysical dynamos as Rmturb

is usually enormous; e.g., the resistive decay time of the
Sun is 107 times larger than predicted by Spitzer conduc-
tivity [6,7].
In real systems the largest eddies often carry the most

turbulent energy. These large eddies are strongly affected
by the geometry and have a similar scale as the magnetic
field. These large-scale eddies can also greatly reduce
the effective Rm of the system-scale flow [Rmeff ¼
Rmð�=�effÞ], thereby raising the dynamo excitation
threshold as observed in several low magnetic Prandtl
number simulations of dynamo experiments [8–10].
These numerical studies predict that large-scale fluctua-
tions are more detrimental to dynamos than those at small
scales [8]. This suppression is consistent with a global �
effect. Turbulent effects were evidently unimportant in
determining the self-excitation threshold in two early dy-
namo experiments, quite likely because scale separation
was enforced. Eddy scales were set by the transverse
dimensions of the pipes used to guide the flow [1,2], and
the � effect was minimized.
In this Letter, we report on changes to the turbulence-

induced fields in the Madison dynamo experiment (MDE)
when the largest-scale eddies are suppressed. We also
provide a method of understanding this change in terms
of nonlinear three-wave couplings in a sphere. Previous
Letters have reported evidence for mean-field currents in
the unconstrained geometry of the MDE: a turbulence-
generated dipole moment was observed (which we will
refer to as a global � effect) [11], and the field line
stretching by shear flow was inhibited (which we will refer
to as a global � effect, or enhanced diffusivity) [12]. Other
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recent experiments (in Perm and at New Mexico Tech)
have also inferred or directly measured the turbulent re-
sistivity [13,14]. Here, we present evidence that the intro-
duction of a baffle at the equator of the sphere has
eliminated these effects by suppressing the culpable
large-scale eddies.

The MDE is 0.5 m radius sphere filled with liquid
sodium. Two 75 kW motors turn a pair of 30 cm impellers
to generate a two-vortex flow with the symmetry axis
collinear with the motor shafts. A simulation of the flow
is shown in Fig. 1. An array of 74 Hall probes at the surface
measures the radially directed component of the magnetic
field with a resolution of 0.25 G. Five radial arrays of 3-d
Hall probes measure internal fields resolved to 1.0 G.
External electromagnets can apply four distinct magnetic
configurations—axial dipole, axial quadrupole, transverse
dipole, and transverse quadrupole—with field strengths
ranging from 0 to 100 G.

The spherical geometry of the MDE allows a convenient
representation of incompressible vector fields by orthogo-
nal toroidal and poloidal basis functions, e.g.,

B ¼ X

i

r�r� Smi

li
ðrÞYmi

li
ð�;�Þr̂

þr� Tmi

li
ðrÞYmi

li
ð�;�Þr̂;

where magnetic fields are denoted by T and S and flows by
t and s. We assume that the vector fields can be further
separated into mean and fluctuating components, e.g.,

S11 ¼ hS11i þ ~S11. The axisymmetric two-vortex flow of
Fig. 1 consists predominantly of ht02ihs02i as originally

motivated by several theoretical studies [15]. This formal-
ism [16] provides a natural set of basis functions
for inferring properties of the turbulent flow from the
measurements of the induced magnetic field. Three-mode

interactions are represented as Bmi

li
!
v
mj
lj
Bmk

lk
; i.e., the mag-

netic mode i interacts with the flow j to produce the
magnetic mode k. The evolution of a given magnetic
mode Bk is given by the total of three-wave couplings
between the flow and full magnetic field:

@tBk ¼ �

�0

�
@2

@2r
� pk

r2

�
Bk þ

X

i;j

Bi!
vj

Bk: (2)

Here, pk ¼ lkðlk þ 1Þ. A graphical representation of the
lowest-order couplings and selection rules is shown in
Fig. 2. The experimental technique employed to infer
properties of the flow is to apply an external magnetic field
and measure the response field. The three applied field
configurations correspond to S01, S

1
1, and S02 poloidal mag-

netic fields. The surface probe array can resolve poloidal
spherical harmonics of the emerging magnetic field up to a
polar order of l ¼ 7 and m ¼ 5 through a singular value
decomposition of the measured surface field.
The largest-scale fluctuations in the flow give rise to a

nonlinear transfer of energy from the largest-scale mag-
netic fields to other modes in a process that resembles the
conventional� effect. This comes about from bidirectional

couplings in the bubble diagram, e.g., hS01i !
~t1
1 ~S11 !

~t1
1 hS01i,

that take the form

@thSji ¼ �pj

r2
hSji

X

i;k

Lijkpk

NjNkr
2
h~t2i i�corr;i; (3)

where Lijk is the Elsasser integral, Ni is the normalization

constant for the spherical harmonic, and �corr;i is the auto-
correlation time of the ith fluctuation. A similar result
can be found for hTji modes. This nonlinear transfer
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FIG. 1 (color online). (a) Mean internal flow for the Madison
dynamo experiment. The hollow black boxes represent the 30 cm
impellers, and the short, thick black lines represent the 8 cm
baffles. The flows are computed by using ANSYS� FLUENT� for
flows with impellers rotating at 800 rpm. The internal probe
array is indicated by the black and purple crosses (purple crosses
being the locations of the probes in Fig. 4). The right side of the
figure shows the (b) driven and (c) lowest-order fluctuating
flows.

FIG. 2 (color online). Coupling of low-order magnetic modes
by low-order flows. The circles contain magnetic modes, and the
arrows represent the three-wave couplings between modes, their
direction, and the flows that catalyze them. Only Smi

li
modes are

observable on the surface of a sphere. The solid lines represent
the mean flow in the MDE. The dashed lines are the large-scale
fluctuations which are disrupted by the baffle. The dotted lines
are the large-scale fluctuations which do not cross the baffle. The
dynamo cycle based on the ht02ihs02i flow, which connects S11, T

1
1 ,

S12, and T1
2 , is not shown here.
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when summed over all fluctuations resembles a turbulent
diffusivity

�turb;j ¼
X

i;k

L2
ijkpk

NjNkr
2
h~t2i i�corr;i: (4)

A similar calculation for flows with turbulent helicity
h~v � r � ~vi leads to a global � effect. In the spherical
harmonic formalism, correlations between toroidal and
poloidal fluctuations of identical mode numbers can con-
vert a mean toroidal field into a mean poloidal field

@thSji ¼ hTii
X

m;n;k

ðLnikLmkj þ LmikLnkjÞ

� pmpk

NjNkr
4
h~tn~smi�corr;m;n: (5)

If n ¼ m, then i ¼ j. This means that poloidal field is
being driven by currents parallel to the toroidal magnetic
field. It is natural to refer to this term as a global � effect
with transport coefficient

�j ¼ �X

n;k

2
L2
nikpnpk

NjNkr
4
h~sn~tni�corr;n: (6)

Previous results from the experiment are characterized
by strong Kolmogorov-like turbulence for the smallest
scales of the flow and low-frequency oscillations of the
shear layer about the equatorial plane at the largest scale
[17]. This hydrodynamic instability has been studied ex-
tensively in topologically similar turbulent flows [18,19]
and is characterized mostly by fluctuations in the ~t11 and ~s01
spectral components of the flow, shown in Fig. 1. These
spectral components have a characteristic scale of the order
of the sphere radius and are larger in scale than the impeller
driven vortices. We speculate that shear-layer fluctuations
are responsible for increasing the volume-averaged effec-
tive resistivity by a factor of 2 [12].

In recent experiments, an axisymmetric stainless steel
equatorial baffle has been installed that extends 8 cm
inward from the wall. The baffle greatly reduces the

amplitude of the ~t11 and ~s
0
1 fluctuations without significantly

changing the magnetic boundary conditions, allowing the
study of their role in the turbulent electromotive force. An
estimate of the effect of the baffles on turbulent fluctua-
tions comes from the turbulent dissipation of applied motor
power �� P=	 4


3 a3 � v3
rms=a, with P being the motor

power, 	 the density, a the sphere radius, and vrms the
speed of turbulent fluctuations [20]. Here, a 20% reduction
in motor power, such as we have for impellers rotating at
1000 rpm, corresponds to a 15% reduction in v2

rms. The
reduction of the shear-layer fluctuations by an equatorial
baffle has been directly observed in a similar geometry of
the von Kármán flow in water experiments [18,19].
The addition of the equatorial baffle has eliminated the

largest-scale eddies in the MDE.—Figure 3 shows a re-

duction of the fluctuation levels of the hS01i !
~s0
1 ~S02 [Fig. 3(b)],

hS11i !
~s0
1 ~S12 [Fig. 3(h)], and hS02i !

~s0
1 ~S03 [Fig. 3(j)] interactions

by�80%. In the Bullard-Gellman formulation, the ~s01 flow
is the only direct catalyst for these interactions. There is a

similar reduction of hS11i !
~t1
1 ~S01 [Fig. 3(f)] and hS02i !

~t1
1 ~S12

[Fig. 3(l)]. Figure 1 shows that both the s01 and t11 eddies

would flow across the equatorial baffle; note that they are
the most significantly damped modes and that higher order
fluctuations which result from smaller scales are relatively
unaffected.
The elimination of the large-scale eddies has increased

the Rmeff to �2:4 of its previous value.—The reduction in
~t11 demonstrated in Fig. 3 would have an associated reduc-

tion in the �turb of Eq. (4). The � effect, facilitated by the
ht02i flow in the experiment, is the generation of a toroidal

magnetic field from poloidal by differential rotation. The
induced toroidal field serves as a measure of Rmeff , since
B� � RmeffB0, with B0 the applied field strength [14].

Figure 4 shows a comparison of the toroidal windup
as a function of radius in the region of the flow with
the greatest differential rotation. The addition of the
baffles has increased this windup factor by 2:36� 0:08.
Furthermore, the reduction of �turb allows the mean
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FIG. 3 (color online). Mean (a),(c),(e),(g),(i),(k) and fluctuating (b),(d),(f),(h),( j),(l) energies of the lowest-order poloidal harmonics
at the sphere’s surface. (a) and (b) describe the axisymmetric (m ¼ 0) response to an axisymmetric applied magnetic dipole. (c) and (d)
describe the transverse (m ¼ 1) response. (e)–(h) repeat the same for an applied transverse magnetic dipole and (i)–(l) for an applied
axial quadrupole. The induced fields are measured for impellers driven at 1000 rpm. Written above certain modes are the ratios of
mode energies with and without baffles. Where applicable, the shortest interaction path from the applied to the response mode is
indicated. Energies are integrated over free space and normalized to the internal energy of the applied magnetic field.
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flow to more effectively amplify and transport magnetic

field. Figure 3(g) shows that the hS11i !
hs0

2
ihS13i interaction has

been enhanced by the addition of baffles. This additional
windup might be attributed in part to a change in the profile
of the mean flow, which is not yet directly measured in the

sodium experiment. However, since hS02i !
hs0

2
i hS04iwas much

more weakly affected, we conclude that the � effect must
dominate.

The addition of the baffle has eliminated the �-effect-
induced dipole moment.—The � effect of Eq. (6) is driven
by correlated ~t11 and ~s11 flows. The elimination of either
component would eliminate the� effect. Figure 3(a) shows
that the mean dipole moment has weakened by an order of
magnitude. The ~s11 flow does not cross the baffle and may
be unimpeded. However, the reduction of the ~t11 flow is well
established by the results presented in Fig. 3 and is suffi-
cient to interrupt the loop.

The results presented demonstrate the important role
that eddy size plays in setting the turbulent resistivity.
Overall turbulent dissipation is relatively unchanged
(only 15%), and yet flows are significantly more effective
at field generation when the largest eddies are damped by
the baffle. These results are also the first measurement of
changes to the wave number resolved turbulent cascade
when several modes are selectively damped and removed
from the spectrum. In our analysis, we have by necessity
worked with a simplified interpretation in terms of a
‘‘global � and � effect.’’ In fact, the nonlinear couplings

are considerably more involved, and we have considered
only the largest order flows.
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physical and astrophysical dynamo simulations and John
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FIG. 4 (color online). Comparison of the toroidal gain and
poloidal flux expulsion between 1000 rpm shots with and with-
out baffles. The radial position is scaled with the radius of the
sphere. Measured fields are scaled with the applied axial dipole
field of 60 G. The probes are located at � ¼ 2:49 and show
the highest induced toroidal field in the sphere. Only the B�

component of the poloidal field is shown.
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