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Discontinuous time derivatives are used to model threshold-dependent switching in such diverse

applications as dry friction, electronic control, and biological growth. In a continuous flow, a discontinu-

ous derivative can generate multiple outcomes from a single initial state. Here we show that well-defined

solution sets exist for flows that become multivalued due to grazing a discontinuity. Loss of determinism is

used to quantify dynamics in the limit of infinite sensitivity to initial conditions, then applied to the

dynamics of a superconducting resonator and a negatively damped oscillator.
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The dynamics of physical systems affected by sudden
systemic changes can be modeled by isolated discontinu-
ities in systems of ordinary differential equations. These
are increasingly applied to study the abrupt activation of
processes for biological or physical control, for example,
relays in electronic circuits, mitosis of living cells, and the
opening of ion channels (see for example [1–4]).

Attempting to solve for dynamics at a discontinuity can
lead to ambiguities in forward or backward time. The latter
arise when solutions stick to the locus of discontinuity [4],
and have nonunique histories but well-determined forward
evolution, with physical interpretations such as frictional
sticking and chattering. Ambiguities in forward time, on
the other hand, imply nondeterministic evolution, and their
application is less well understood.

The purpose of this Letter is to formalize a phenomenon
currently emerging in dynamical systems, whereby a lo-
calized loss of determinism leads to extreme forms of
bifurcations and chaos. The salient feature, presented
here, is that it is generically possible for an initially well-
determined flow to evolve onto a point where it becomes
multivalued. The multiple outcomes form a set-valued flow
that is itself well determined. We characterize these as
explosions of allowed states of the system, which imply
infinite sensitivity to initial conditions in the limit of
infinite rate of change in the flow velocity. Such explosions
may be robust, or may appear fleetingly as a parameter is
varied, as determined by the causative singularity. The
latter provide an explanation for bifurcationlike transitions
classified in [5], and the former generalize a nondetermin-
istic form of chaos discovered in [6].

Two applications are presented for illustration: an ex-
perimentally derived model of a sensor whose dynamics
changes abruptly between normal and super conducting
temperature ranges, and an abstract model of a particle
subject to direction dependent forcing and damping.

A prototype for such systems is given by considering an
n-dimensional state x, evolving according to a set of
differential equations with a discontinuity, given by

d

dt
x ¼ fðxÞ ¼

�
fþðxÞ if �ðxÞ> 0;

f�ðxÞ if �ðxÞ< 0;
(1)

where f� and � are smooth vector and scalar functions,
respectively, and the discontinuity takes place when
� ¼ 0. It is important to note, throughout this Letter, that
a tangencywill refer strictly to a quadratic tangency, so that
if f� lies tangent to the discontinuity surface then f� �
@x� ¼ � ¼ 0, but ðf� � @xÞ2� � 0.
In general, the flow in the regions �> 0 or �< 0 is

given by the first integral of (1). Although (1) is undefined
at � ¼ 0, continuous flow solutions can be found even at
the discontinuity, and the common interpretations all arrive
at the same result. Near the discontinuity surface we as-
sume that the state x lies in �> 0 for a fraction � of a
small time interval �t, and lies in �< 0 for the remaining
time interval ð1� �Þ�t. Then the change in x over �t is
�x ¼ ��tfþ þ ð1� �Þ�tf�. Letting �t ! 0 and allowing
� to take any real value, we therefore augment (1) with the
differential inclusion

d

dt
x 2 �fþ þ ð1� �Þf�; � 2 R if � ¼ 0: (2)

If the flow passes through the discontinuity, this multi-
valued equation applies only at the instant when � ¼ 0,
and allows orbits in �> 0 and �< 0 to be concatenated.
Thus a unique flow crossing the discontinuity is formed,
illustrated at the unshaded regions in Fig. 1. This applies
only if the components fþ � @x� and f� � @x�, of fþ and
f� normal to � ¼ 0, have the same sign.
If, instead, the flow remains on the discontinuity, then

(2) contains an element lying tangent to � ¼ 0, given by

fs¼�sfþþð1��sÞf�; �s :¼ f� �@x�
ðf��fþÞ�@x�: (3)

Derived by Filippov [4,7] (usually with (2) restricted to
� 2 ½0; 1�), this prescribes the dynamics of the flow when
sticking to the discontinuity. We need apply fs only when
both vector fields point towards, or both away from, the
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discontinuity, that is, when f� � @x� have opposing signs,
as shown at the shaded regions in Fig. 1.

Thus one obtains a flow that can hit the discontinuity and
either cross it, concatenating solutions in the fields fþ and
f�, or stick to it, concatenating solutions in the fields f�
and fs. The boundary between the two lies where fþ or f�
have turning points (tangencies) with respect to � ¼ 0,
where the flow grazes the discontinuity (see Fig. 1). The
remainder of this Letter deals with transitions between
different behaviors at such boundaries.

The flow consists of all solutions of (2) obtained by
concatenating the flows of fþ, f�, and fs. Consider what
happens when the flow from a given point p grazes as in
Fig. 2. Under perturbation this grazing will not persist,
meaning that if p is moved, the flow through p will
generically either hit � ¼ 0 transversally or miss it
altogether.

The case shown in Fig. 2 involves fþ curving away from
� ¼ 0, while f� points away from it. The flow through p
becomes multivalued at grazing, in spite of which it can be
precisely described as follows. Let��

t ðpÞ be the flow of f�

through a point p, so that

d

dt
��

t ðpÞ ¼ f�ð��
t ðpÞÞ; ��

0 ðpÞ ¼ p; (4)

where� denotes ‘‘þ,’’ ‘‘�,’’ or ‘‘s.’’ The flow through p in
�> 0 hits the discontinuity at time t ¼ t1 if �ð�þ

t1 ðpÞÞ ¼
0, and grazes if fþ � @x�ð�þ

t1 ðpÞÞ ¼ 0. For t < t1 the flow

is single valued. For t > t1 the state undergoes an explosion
of possible values, given by

x 2 fx� ¼ ��
t�t1��ð�s

�½�þ
t1 ðpÞ�Þ: � 2 ½0; t� t1�g: (5)

Each orbit in the flow sticks for a time � 2 ½0; t� t1� after
grazing, then leaves � ¼ 0 following either �þ

t or ��
t .

If p is slightly shifted (to p0 or p00), for instance because
a parameter in the system changes, the flow switches
discontinuously between x ¼ �þ

t ðp0Þ and x ¼
��

t�t1ð�þ
t1 ðp00ÞÞ, in the latter case hitting the discontinuity

transversally at time t ¼ t1. This is classified as a form of
bifurcation in [5], neglecting the explosion (5) itself.

The significance of such an event is seen if either p0 or
p00 lies on, for example, a limit cycle in the flow. If varying
a parameter causes grazing in the manner of Fig. 2, the
simple local geometry reveals that the cycle must suffer a
sudden explosion, followed by abrupt disappearance of
both the explosion and the cycle itself. The derivation of
this event, forthcoming in [5], was promptly followed by
its observation as the mechanism for sudden onset of
thermal oscillations in a superconductor [8], for which
only preliminary studies of a lower dimensional approxi-
mate model have previously been made. Below, the grazing
event is identified and simulated in the full model.
An experimentally motivated example: explosion in a

superconducting resonator.—The device of interest is a
stripline resonator designed for high sensitivity measure-
ments of quantum phenomena, such as the Casimir effect

[1]. With i ¼ ffiffiffiffiffiffiffi�1
p

, and " a small parameter, the system

d

dt
B ¼ �ðTÞB� i; "

d

dt
T ¼ sðTÞjBj2 � T; (6)

describes the complex current amplitude, B, in a ring of
niobium nitride at temperature T, which is superconduct-
ing when sufficiently cold. All quantities are nondimen-
sionalized so that the ring is superconducting for T < 1 and
normal conducting for T > 1, causing � and s to jump
between constant values �� and s�,

ð�ðTÞ; sðTÞÞ ¼
8<
: ð�þ; sþÞ if T > 1;

ð��; s�Þ if T < 1:
(7)

Grazing occurs when (6) lies tangent to the discontinuity
surface T ¼ 1, hence where d

dt T ¼ 0. Figure 3 shows a

limit cycle on which these conditions are satisfied, along
with a small perturbation that destroys the cycle in the
manner of Fig. 2, after which the system settles rapidly
onto a preexisiting steady state. The effect fits qualitatively
with experimental observations (see [1,8] and references
therein). Further work remains, to measure the parameter
values at which grazing occurs experimentally, and to
study the way in which, near grazing, noise causes repeated
jumps between the modes a and b in Fig. 3.
It follows from the geometry in Fig. 2 (see [5]) that

grazing explosions are codimension one phenomena,
meaning that generically they may be observed as a

FIG. 2. Phase portrait of a grazing explosion. The flow through
nearby points p, p0 and p00, is found by concatenating the flows
�þ

t , �
�
t , and �s

t . An explosion takes place through p.

f+

f s

f−

σ >0

σ <0

FIG. 1. A vector field jumps between fþ above (filled arrows),
f� below (unfilled arrows), and fs inside (double arrows), a
discontinuity surface. Sticking occurs in regions where f� are in
opposition (shaded), and crossing occurs otherwise (unshaded),
with f� tangent to the surface at the boundaries.
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parameter varies. However, this also implies that the many
outcomes possible during the explosion (shown in Fig. 2
but omitted between a and b in Fig. 3) are not readily
observed in practice. We now show that there are scenarios
where the full explosion is observable even under pertur-
bation, with striking consequences. In more than two di-
mensions there may exist points where both fþ or f� are
tangent to the discontinuity simultaneously, which allows
nondeterminism to affect the flowmore robustly than in the
grazing explosion.

Consider first the scenario of a planar system that is
symmetric about a discontinuity, given by (1) with

f� ¼ �1� x2

x2 � x1

 !
; �ðx1; x2Þ ¼ x2; (8)

for which the points ðx1; x2Þ ¼ ð1;�1Þ are unstable foci.
Then, on � ¼ 0, f� � @x� ¼ 0 at the origin, and fs ¼
ð�1; 0Þ. As a simple sketch shows (Fig. 4), every point in
the flow reaches the origin in forward time, and may do so
via sticking. Thereafter the flow consists of sequences of
arcs ��

t outside the discontinuity, and sticking �s
� for

indeterminate times �. Thus the system makes recurrent
visits to the origin, interspersed by excursions into � � 0
with unpredictable durations and trajectories.

The model above is artificial because of the imposed
symmetry, but such scenarios do occur generically in
higher dimensions, at transverse intersections between
sets f� � @x� ¼ 0where fþ or f� are quadratically tangent
to the discontinuity (as in Fig. 1). At such points, two
different regions of sticking meet, and by concatenating
the flows of f� and fs, one obtains a flow that can pass
through the double tangency from attracting to repelling
regions of the discontinuity surface, similar to Fig. 4.
Figure 5 shows scenarios, generic in three or more

dimensions [4], where one (i) or many (ii) orbits pass
between sticking regions via a double tangency. In the
figure, the flow through a point p is single-valued until it
hits a double tangency at time t1, after which the state
explodes into a family of orbits that stick for a time � 2
½0; t� t1�, then follow fþ or f� until time t, expressed as

x 2 fx� ¼ ��
t�t1��½�s

�ð�s
t1ðpÞÞ�: � 2 ½0; t� t1�g: (9)

The scenario in Fig. 5(ii) makes possible an extreme
manifestation of nondeterminism, similar to Fig. 4. If some
global mechanism exists that returns the flow through q�
to a neighborhood of p, then a set is generated in which the
flow returns recurrently to the double tangency, yet each
excursion has an unpredictable duration and trajectory,
constituting nondeterministic chaos. A formal definition
of this requires augmenting the definition of deterministic
chaos, by extending to multivalued flows the idea of sensi-
tive dependence on initial conditions. Such an extension is
given in [6], where nondeterministic chaos arises as a
relatively rare event near a novel bifurcation. We conclude
with a potentially more common example that exhibits the
phenomenon.
A toy model: explosion in a mechanical oscillator.—

Consider an object of unit mass, whose displacement x
satisfies a Newtonian force law €x ¼ ð _x� vÞb� xþ
gð _x; tÞ, where _x ¼ dx=dt. This includes a spring force
�x, a negative damping proportional to the speed relative
to some reference v, plus an additional forcing g. For _x <
v let g grow linearly in time, say as g ¼ r1t. For _x > v let g
have speed-dependent dynamics, setting g ¼ r2z where
_z ¼ aþ ð _x� vÞc. For this abstract illustration we let

x2

c

c
x1

φ−
t

φ+
t

φ t
sφt

s

FIG. 4. Nondeterministic chaos in the system (8). For any two
points outside the arcs c, there exists an orbit from the origin
passing through them. We can view this as extreme sensitivity to
initial conditions caused by nondeterminism at the double fold.
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FIG. 3 (color online). Effect of grazing explosion in a super-
conductor: simulation of (6) for " ¼ 100, sþ ¼ 3:891, s� ¼
1:297, �� ¼ �0:2þ i, �þ ¼ �0:5þ i�. For two nearby val-
ues of � (see picture), an orbit through the initial point (IP at
B ¼ 0:8� 0:4i, T ¼ 3) oscillates around the cycle a, crossing
between T > 1 and T < 1, or finds a steady state b in T > 1. The
plane where T ¼ 1 and parabolas where dT=dt ¼ 0 are shown.
In the right figure, the time trace of the power jBj2 is shown, with
the small change in � introduced at time t ¼ 10.

(i)      (ii)

p p

φ t1(p)s φ t1(p)s

q =φ t−t1(φ t1(p))si iq

q+

q−

qs

qs

q+
xτ(t) xτ(t)

σ =0 σ =0

FIG. 5. Explosion at a double tangency: the flow �s
t ðpÞ hits the

singularity at t ¼ t1. The subsequent multivalued flow is given
by (9), either sticking along �s

t or escaping along �
�
t . In (i) only

one, and in (ii) many, orbits traverse a single point between
regions where the discontinuity changes from attracting to
repelling. Some particular points qi are labeled.
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a ¼ �1:3, b ¼ 0:1, c ¼ 0:2, v ¼ �1, r1 ¼ 12, r2 ¼ �1.
Letting u ¼ _x� v, we obtain a first order system

d

dt
x ¼ uþ v;

d

dt
z ¼ 1þ ða� 1þ cuÞHðuÞ;

d

dt
u ¼ �xþ buþ r1zþ ðr2 � r1ÞzHðuÞ;

(10)

where HðuÞ ¼ 1 for u > 0 and HðuÞ ¼ 0 for u < 0. The
flows are tangent to the discontinuity surface, u ¼ 0, along
the lines l1;2 where x ¼ r1;2z (labeled in Fig. 6), which

intersect at the origin. Part of the flow through the origin
detaches from u ¼ 0, winds around through both u > 0
and u < 0, returns to u ¼ 0, then sticks and returns to
the origin, local to which the phase portrait resembles
Fig. 5(ii). This generates a nondeterministic chaotic set,
on which the entire flow meets the double tangency both in
forward and backward time, and which is highly attracting
with respect to the surrounding flow.

The term ‘’’nondeterministic chaos’’ is not intended to
suggest that smoothing the discontinuity will yield deter-
ministic chaos. It is a simple exercise to simulate (10) with
the stepHðuÞ replaced by a sigmoid function, which yields
a system where the flow explores the set shown in Fig. 6,
but is enormously sensitive to factors such as numerical
precision and the method of smoothing. Initial study of this
and other examples suggests that smoothing can lead to
chaos, canards, mixed mode oscillations, or simple limit
cycles. Further study is warranted.

Discontinuous models are increasingly common in me-
chanical, electronic, and biological applications, often ap-
proximating sigmoidal changes for which a precise
description is lacking. A general understanding of discon-
tinuity induced phenomena is slowly emerging. In many
cases, dynamics is robust to the precise form of the sigmoid
or discontinuous jump. Explosions, on the other hand, will
certainly be sensitive to the jump’s precise form. The
multivalued flow evidently plays a role in organizing non-
determinism in the discontinuous limit.

The genericity of the vector fields underlying Figs. 2
and 5 has been understood since the seminal work of
Filippov [4], but their nondeterministic consequences
have received little attention. Although illustrated here
in three dimensions, these derive from normal form vector
fields generic in any higher dimension [5]. When dimen-
sions are added, the local geometry responsible for non-
determinism remains, the set-valued flows retain the same
dimension, and the phenomena remain of codimension
one [Figs. 2 and 5(i)] or codimension zero [Fig. 5(ii)],
provided that discontinuities of the local form (1) exist.
Explosions, as introduced here, reveal extreme unpredict-
ability caused not by external noise or defective modeling,
but by inherent local geometry. With this fact having been
largely overlooked, it is not surprising that examples
beyond those above remain to be uncovered.

It should be noted that the flows considered here are
continuous, with a discontinuous time derivative.
Nonuniqueness in forward time is not uncommon in sys-
tems involving hybrids of flows with maps, such as impacts
or finite state resets, where the flow itself is discontinuous.
In the present study it is the continuity of the flow, coupled
with loss of determinism, that generates explosions asso-
ciated with tangency to a discontinuity.
A discontinuity in the velocity field of a continuous flow

allows multiple histories or outcomes from a single point.
Regarding the latter, it might be argued that any physical
application must contain information that restores deter-
minism. Such information is not, however, part of the
model in the discontinuous limit. Nor is it guaranteed
that one has practical access to such information that is
not overwhelmed by noise or uncertainty. The discontinu-
ous model provides a geometric description in the limit
where infinite sensitivity to initial conditions constitutes
the breakdown of determinism.
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FIG. 6 (color online). Nondeterministic chaos in a simulation
of (10). The two views show the discontinuity surface u ¼ 0 and
tangency lines l1;2. The flows in u > 0, u < 0, and the sticking

flow on u ¼ 0, are indicated by �þ
t , �

�
t , �

s
t . Several orbits are

shown on the boundaries of the region of nondeterministic chaos.
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