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Oscillatory dynamics of coupled excitable FitzHugh-Nagumo elements in the presence of noise is

investigated as a function of the coupling strength g. For two such coupled elements, their frequencies are

enhanced and will synchronize at a frequency higher than the uncoupled frequencies of each element. As

g increases, there is an unexpected peak in the frequency enhancement before reaching synchronization.

The results can be understood with an analytic model based on the excitation across a potential barrier

whose height is controlled by g. Simulation results of a coupled square lattice can quantitatively reproduce

the unexpected peak in the variation of the beating rates observed in cultured cardiac cells experiments.
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Periodic rhythm generations are important for biological
systems. Two well-known examples are the sino-atrial
(SA) node [1] for the generation of heart beats in our heart
and the suprachiasmatic nucleus [2] in our brain to provide
circadian rhythm for our body. Interestingly, these two
important rhythms are not generated from a single oscil-
latory cell but rather from a network of more or less similar
oscillatory cells. The periodic rhythm is then the result of
the synchronization [3] of the elements in the network.
Obviously, an advantage of such a network design is its
robustness; that is: the failure of a few elements will not
lead to the malfunction of the clock. However, for such a
network design, there is a major unsolved issue of how the
synchronized common frequency (�0) of the network can
be controlled. Presumably, this issue is related to the
intrinsic dynamics of the elements in the network and the
coupling between them. This issue would become trivial if
the intrinsic properties of the individual cell (element) in
the network can be controlled at will. Unfortunately, the
intrinsic properties of the cells are more or less fixed by
physiological conditions. It is the coupling between cells,
such as synapses [4,5] between neurons or mechanical
sensitive fibroblast [6] between cardiac myocytes, which
can be tuned. Furthermore, experiments also indicated that
gap-junction couplings between cells increases during car-
diac cultures growth [7–9]. The beating rate of cardiac
systems will be slower if the intercellular coupling is
impaired, for example, by blocking the gap junction to
mimic ischemia [10] or at low temperatures [11].
Therefore, it is proposed [12,13] that �0 of the network
can be controlled by changing the coupling strength be-
tween its elements. In fact, this view has been supported by
experiments of neuronal [4,5] and cardiac [14,15] cultures.
It has been observed experimentally that there is a signifi-
cant variation in �0 with culture time in the cardiac
myocytes and fibroblasts culture as the system becoming
synchronized [15]. Surprisingly, �0 increased with

cultured time and reached a maximum (from 1.4 to
2.3 Hz, enhanced by �65%) before it became completely
synchronized [see Fig. 4(a)] at an enhanced frequency of
�36% (� 1:9 Hz) [15]. It is believed [15] that the coupling
does not only produce the synchronization but can also
change �0 at the same time. It is not clear how a mono-
tonic increase in coupling strength will lead to a nonmono-
tonic change in �0.
However, an assembly of coupled limit-cycle oscillators

cannot reproduce the experimental observations of the
variation of �0 with the coupling strength, as the system
synchronized. This is due to the fact that the dynamic range
of �0 will usually lie between the maximum and the
minimum of the intrinsic frequencies of the elements, i.e.
�0 is more or less bound to lie within the ‘‘compromised’’
frequency of its constituency. For example, in the mean-
field Kuramoto phase-coupled oscillator network, the sys-
tem synchronized at the mean of the intrinsic frequency
distribution of the constituents [16]. To resolve this prob-
lem, we propose here that the limit-cycle oscillators can be
replaced by coupled noisy excitable elements [17] in a
phenomenon known as coherent resonance [18]. Since it
is known [19] that the oscillatory behavior of excitable
elements, when coupled to other excitable elements or
passive elements, can be tuned by the coupling g, it is
highly likely that these noisy elements can provide the
needed response of �0 with coupling as observed in
experiments.
Employing the idea above, we have investigated the �0

produced by these coupled noisy excitable elements under
different g. We find that not only can �0 be controlled
by g, it can even be faster than the fastest individual
uncoupled element under the same noise level. For a large
ensemble of coupled elements in a network, our simula-
tions show that �0 can be enhanced up to �60% in some
noise and coupling regimes. This enhancement effect can
be understood analytically in a system with two elements.
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Interestingly, this mean frequency is not monotonic in g.
This last finding is consistent with experimental observa-
tions in cardiac culture if the growth of g in the culture is
linear in time.

Consider a system of N coupled FitzHugh-Nagumo
(FHN) noisy excitable elements [20], given by

�i _xi ¼ xi � x3i =3� yi þ
X0

j

gðxj � xiÞ;

_yi ¼ xi þ ai þDi�iðtÞ; i ¼ 1; 2; . . . ; N;

(1)

where g is the coupling strength,
P0

denote summation
over connected neighbors, the Di’s are the intensities
(taken to be the same for simplicity) of uncorrelated noises
with h�iðtÞ�jðt0Þi ¼ �ðt� t0Þ�ij. Here, ai is the parameter

governing the excitability of the ith element. For jaj> 1,
the element is excitable and would be harder to be excited
if jaj is larger. As usual, �i � 1 implying x and y are the
fast and slow variables, respectively. Spikes can be gen-
erated when the noise intensity is high enough to overcome
the threshold [18], but otherwise the system is quiescent.

The frequency enhancement effect is already revealed in
the simple case of two coupled noisy elements with differ-
ent excitabilities as shown in Fig. 1. The firing frequency of
the more excitable element (a1 ¼ 1:05) is higher than the
less excitable one (a2 ¼ 1:12). Figure 1 shows the frequen-
cies of both the fast and slow elements increase initially as
g increases, attain maxima, decrease slowly, and then
synchronize for stronger couplings. The noise strength in
Fig. 1 is chosen such that the noisy excitable elements will
result in more or less regular periodic oscillations, and
we have verified that within a reasonable range of
noise strengths, the results are qualitatively similar. The
degree of synchronization of a collection of oscillators can
be quantified by the mean square deviation (�2

syn) of the

distribution of the phase differences between pairs
of oscillators relative to a uniform one [21,22]. �2

syn ¼ 1

and 0 denotes asynchrony and perfect global phase

synchronization, respectively. �2
syn in Fig. 1 indicates that

perfect synchronization is achieved at higher couplings.
Note that as the coupling is increased, the system synchro-
nized at a frequency that is slightly faster than either of the
intrinsic uncoupled frequencies.
In order to gain deeper insights for the physical mecha-

nism of frequency enhancement, we analyze the two-
element system in Eq. (1) using the fast-slow approach.
The dynamics of a FHN element (say x1) can be approxi-
mately viewed as the motion inside a double-well potential

given by Uðx1Þ ¼ � x2
1

2 þ x4
1

12 þ y1x1 þ gx1ðx12 � x2Þ. The

slow variable y1 is treated as a constant parameter (with
value at the fixed point). The choice of x2 is slightly above
its fixed point value since even though it is at rest for most
of the time, it can be excited by coupling and noise.
Figure 2(a) shows schematically the double-well potential,
and the barrier height �U depends on the coupling strength
g. For an excitable cell, x1 stays at the resting state (left
hand side well) for most of the time and has to overcome
�U to be activated to the excited state (right-hand side
well). The activation can be resulted from noise or cou-
pling from other cells. �U can be readily calculated as
shown in the inset of Fig. 2(a), it decreases with g for small
coupling but then increases for large coupling. The fact
that �U has a minima for some coupling strength already
revealed that there is an optimal coupling that x1 can be
excited and hence can fire more frequently. One can pro-
ceed further to compute the firing rate analytically using
the Kramer’s rate theory. The FHN noisy dynamics can be
modeled by a Langevin equation for the dynamics of the
fast variable as,

�1 _x1 ¼ x1 � x31=3� y1 þ gðx2 � x1Þ þD�1ðtÞ
� hðx1ðtÞÞþD�1; (2)

where D is some effective noise strength and �1 is the
Gaussian white noise. This Langevin equation can be re-
formulated to a Fokker-Planck equation [23] in terms of the
space-time dependent probability density [Wðx; tÞ] as

FIG. 1 (color online). Frequencies and degree of synchroniza-
tion of two coupled noisy excitable FHN elements (D ¼ 0:65,
a1 ¼ 1:05, a2 ¼ 1:12, �1 ¼ �2 ¼ 0:01), under the same noise
intensity. Upper two curves: frequencies. Lower curve: �2

syn.

FIG. 2 (color online). (a) The schematic double-well potential
of the FHN model as given in Eq. (2). The inset is the energy
barrier �U as a function of g showing the existence of a minimal
�U. (b) The normalized escaped rate calculated from Kramer’s
theory as a function of g. The parameters x2 ¼ �0:95 and
y1 ¼ �0:66 were used in the approximation for the potential.
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@Wðx1; tÞ
@t

¼
�
�@h½x1ðtÞ�

@x1
þD2

2

@2

@x21

�
Wðx1; tÞ: (3)

Since the probability of hopping from the resting state to
the excited state is determined by �U, the firing (hopping)
rate can be estimated analytically [23]. One can obtain the
escape rate from the resting to the excited states as the ratio
of the probability flow [Sðx1; tÞ] to the probability of find-
ing the particle within the well around the resting state (P).
The probability density and probability flow satisfy the
continuity equation, and the escape rate r can be calculated
[23] under steady state condition to give

r� S

P
¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U”ðxminÞ
U”ðxmaxÞ

s
exp

�
�2ðUðxmaxÞ�UðxminÞÞ

D2

�
; (4)

where xmin and xmax are the minimum and maximum of
UðxÞ as depicted in Fig. 2(a). Figure 2(b) displays the
normalized escape rate as a function of the coupling g
calculated from Eq. (4), showing a peak at some optimal
coupling. Thus the frequency enhancement can be de-
scribed by the enhanced escaping through the barrier at
some coupling regime. It should be noted that the calcu-
lated escape rate will differ but still show qualitatively
similar behavior with a somewhat different (but reason-
able) choice of the values of y1 and x2 in the
approximation.

Motivated by the experimental observations that the
coupling between cells in a cardiac culture increases with
time [7–9], similar idea can be used to understand the
observations of cardiac cell culture experiments [15] quan-
titatively. Our rationale is based on the observation that the
structure of a cardiac culture is similar to that of an SA
node which is consisted of oscillating clusters [1] and the
SA node is intrinsically noisy [11]. Hence, we apply the
idea of noise-induced oscillation in excitable elements to
mimic the oscillatory behavior of the clusters. We have
performed simulations of coupled noisy FHN elements on
a two-dimensional lattice. Each FHN element is identical
and coupled to its nearest neighbors in a square lattice with
identical coupling g, but each element is subjected to

independent uncorrelated noises. In the simulation, the
beating frequency distribution of these elements are re-
corded for different values of coupling strengths g. The
time series of an oscillator in the network at two coupling
characteristic strengths is displayed in Fig. 3(a) showing
that the noisy oscillator is undergoing rather regular oscil-
lations. Figure 3(b) shows the mean and width of the
frequency distribution as a function of g. Note that the
width of the frequency distribution also displays a peak as
g increases towards synchronization due to the coupling
between the elements.
The mean beating rate initially increases with low values

of coupling strengths, attains a maximum as the elements
become synchronized. There is a peak enhancement of
about 60% and an enhancement of about 35% when the
system is almost fully synchronized, which agrees quanti-
tatively well with the experimental data in [15].
To make a further connection with the cardiac experi-

ments, experimental data of mean beating rates as a func-
tion of time are made to match with the results of
simulations on a square lattice by adjusting the values of
g as a function of time. Figure 4(a) shows the normalized
beating rate taken from Ref. [15] together with the adjusted
simulation results. Figure 4(b) shows the variation of g as a
function of time obtained with this procedure. It can be
seen that there is a regime in which the coupling grows
linearly with time as the system becomes fully synchro-
nized, and then the growth stops. This last finding suggests
that the coupling in the system undergoes a period of linear
growth (t ’ 20–40 hr) as the system is in the process to
synchronize. During this linear growth period, the mean
frequency of the system also shows a maximal frequency
span. Presumably, such a large frequency span would be
desirable for the system to search for the optimal beating
rate for its biological functions. As a further check, using
the obtained coupling variation with time in Fig. 4(b), one
gets consistent results for the variation of the width of
frequency distribution in simulations and experiment as
shown in the inset of Fig. 4(b).
In the oscillatory behavior of coupled noisy excitable

networks, usually a stronger noise would result in a larger

FIG. 3. Simulation of coupled identical excitable elements (a ¼ 1:05) on a square lattice (55� 55), under independent noises of the
same intensity (D ¼ 0:65). (a) The time-series data of an element at coupling strengths g ¼ 0:36 (upper panel) and 0.6 (lower panel).
(b) The average frequency and width of frequency distribution. The degree of synchronization, �2

syn is also shown.
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frequency enhancement. For reasonable choices of noise
strengths, the above frequency variation phenomenon still
holds, for example, at D ¼ 0:45, one obtains a maximal
enhancement of about 50% for the square network. On the
other hand, too strong a noise will make the oscillations too
irregular, and the question is how should one choose a
suitable noise strength to model the system. At a suitable
noise strength, the oscillatory behavior should be rather
coherent. For example in our square network with
D ¼ 0:65, Fig. 3(a) shows the time-series of an arbitrary
element at some characteristic coupling regime as the
system synchronized (�2

syn begins to vary strongly at

g ¼ 0:36 and become synchronized at ’ 0:6), showing
that the element is performing rather coherent oscillations
at the noise strength D ¼ 0:65. The regularity of the os-
cillations of the system at this noise strength can be de-
scribed by the mean to width ratio of the frequency
distributions, and for g ¼ 0:4, the mean to width ratio is
�20. This is comparable to the experimental observation
in [15] of a mean to width ratio of about 10–30 as the
system synchronized (at time 25–35 hr).

It is clear that the presence of noise in a network of
excitable elements can produce nontrivial effects. Instead
of staying at the usual compromised frequency, the fre-
quencies of these coupled noisy elements are tuned by g. If
the network of noisy oscillators in the SA nodes can also be
modeled by our system, then the unusual abundance of
fibroblast [24] in the SA node can be explained. Since only
the number of fibroblasts can be changed in the SA node, it
is plausible that the SA node uses the number of fibroblasts
to tune its oscillation frequency through the effective cou-
pling. Such a frequency enhancement effect appears to be
rather generic in noisy excitable systems. We have verified
that similar phenomenon can also be produced with a
Hodgkin-Huxley model. Intuitively, this enhancement
can be rationalized for excitable systems because the

excitation of an element in an excitable network can induce
the excitations of its neighbors through coupling and vice
versa.
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FIG. 4 (color online). Comparison of the simulation results on
a square lattice (ai ¼ 1:05, D ¼ 0:65) with the cardiac synchro-
nization data in [15]. (a) Solid curve: normalized average fre-
quency of the square network. Open circles: experimental data.
(b) Time dependence of the coupling strength deduced by
matching with the experimental data. The curve is a guide to
the eyes. Inset: Solid curve: simulation results of the normalized
width of the frequency distribution of the square network. Open
circles: experimental data.
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