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It has already been known for two decades that general relativity can be reformulated as a certain gauge

theory, so that the only dynamical field is an SO(3) connection and the spacetime metric appears as a

derived object. However, no simple action principle realizing these ideas has been available. A new

elegant action principle for such a ‘‘pure connection’’ formulation of GR is described.

DOI: 10.1103/PhysRevLett.106.251103 PACS numbers: 04.20.Cv

In [1] Plebanski has shown that instead of the spacetime
metric the dynamical field of general relativity (GR) can be
taken to be a collection (triple) of two-forms satisfying a
certain algebraic equation. This idea was taken further in
[2,3], where it was shown that the two-form field (as well as
the Lagrange multiplier field of the Plebanski formulation)
can be integrated out to obtain a ‘‘pure connection formula-
tion’’ of GR. An action principle realizing this idea in
the case � ¼ 0 of zero cosmological constant GR was
described in [2]. The case� � 0 proved to bemore difficult,
and only a rather complicated (and erroneous, see [4]) action
was given in [3]. The correct treatment of the � � 0 case
was given in [5] and then [6]. The resulting actions, however,
are far from simple, which raises serious doubts about the
usefulness of reformulations of this type. The purpose of this
Letter is to point out that an elegant and simple ‘‘pure
connection’’ action principle for GR encompassing both
��0 and �¼0 cases is possible. Our action principle
also provides an answer to the question posed in [5] as to
‘‘what it is that makes the Lagrangians found better than
their obvious generalizations.’’ Indeed, we shall see that the
GR Lagrangian is the unique Lagrangian (within a certain
class) possessing a property that its SO(3) gauge field is the
self-dual part of the metric-compatible spin connection.
Another significant improvement achieved by our work is
that in contrast to [2,5,6], our action is a functional of the
connection only; no additional auxiliary field is necessary.

We start by describing the new variational principle, and
then prove that solution of the arising Euler-Lagrange
equations are in one-to-one correspondence with solutions
of Einstein’s theory. We first discuss the case of the
Riemannian signature GR, of importance, in particular, in
the branch of mathematics studying Einstein manifolds,
see, e.g., [7]. It is simpler, for the connections that one
deals with are real-valued. A pure connection formulation
is also possible for the physically relevant Lorentzian
signature GR, but, similar to the Plebanski formulation
[1], it uses complex-valued SOð3;CÞ connections and re-
quires certain reality conditions to be added. We discuss
this at the end of the Letter.

As in [2,3], the main dynamical field of our formulation
is an SO(3) (real-valued for Riemannian signature case)

connection field Ai, i ¼ 1, 2, 3 over the spacetime mani-
fold M. In this Letter we only discuss the local aspects, so
we leave the choice of an SO(3) bundle over M unspeci-
fied. We just mention that in case M is compact a very
specific bundle must be chosen in order to obtain the
equivalence to GR. We take Ai to be a dimensionful
quantity with dimensions of A� 1=L, where L is a unit
of length. Given a connection Ai, its curvature is given
by Fi ¼ dAi þ ð1=2Þ�ijkAj ^ Ak. Here the form notation
is used, and ^ denotes the wedge product of forms.
As in [2,3], we consider the 4-form Fi ^ Fj, which is
valued in the second (symmetric) power of the Lie
algebra suð2Þ. Using the density weight one antisymmetric
tensor ~�����, which does not need a metric for its defini-
tion (here �; �; . . . are the spacetime indices), we can
convert the 4-form Fi ^ Fj into a density weight one

symmetric 3� 3 matrix ~Xij :¼ ð1=4Þ~�����Fi
��F

j
��, so

that Fi ^ Fj ¼ ~Xijd4x. We note that ~Xij has dimensions
of 1=L4. Now consider an arbitrary homogeneous of
degree one, gauge invariant function f:Matð3� 3Þ ! R,
i.e., a function satisfying fð� ~XÞ ¼ �fð ~XÞ as well as
fðO ~XOTÞ ¼ fð ~XÞ, O 2 SOð3; RÞ. Then fð ~XÞ is a density
weight one, and can be integrated over the spacetime to
produce an action. We refer the reader to, e.g., [8] for more
details on this construction of diffeomorphism invariant
actions. We also note that the sketched construction of
actions is somewhat similar to that described in [9] in the
context of stable differential forms.
The simplest possible diffeomorphism invariant gauge

theory action corresponds to fð ~XÞ ¼ Trð ~XÞ. This, however,
gives a topological theory without any interesting dynam-
ics. As we shall now see, general relativity (with � � 0)
arises for a certain other choice of f. To describe it, let us
somewhat restrict the class of connections that are used in
the variational principle. Thus, following [10] we call a
connection Ai definite if the corresponding real symmetric
matrix ~Xij is definite, i.e., its eigenvalues are all nonzero
and of the same sign (everywhere in M). For such con-
nections we have a well-defined notion of the matrix

square root of ~Xij, which is a symmetric matrix ð
ffiffiffiffi
~X

p
Þij

such that ð
ffiffiffiffi
~X

p
Þijð

ffiffiffiffi
~X

p
Þjk ¼ ~Xik. Explicitly, if the matrix ~Xij
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is diagonalized by an orthogonal transformation O 2
SOð3Þ, i.e., ~X ¼ ODOT ,D¼diagð~�1; ~�2; ~�3Þ, then ð

ffiffiffiffi
~X

p
Þ ¼

O
ffiffiffiffi
D

p
OT ,

ffiffiffiffi
D

p ¼ diagð
ffiffiffiffiffiffi
~�1

q
;

ffiffiffiffiffiffi
~�2

q
;

ffiffiffiffiffiffi
~�3

q
Þ. This involves a

choice of the branch of the square root function. For our
purposes any of the two branches can be taken; the action is
independent of this choice. Indeed, consider the function

fð ~XÞ :¼ 1

16�G�
ðTr

ffiffiffiffi
~X

p
Þ2: (1)

Here G, � are the Newton’s and cosmological constants,
respectively. Note that because of the second power present
here the function (1) is independent of which branch of the
square root is used. The function (1) is homogeneous of
degree one and gauge invariant. Thus, it satisfies all the
requirements discussed above, and so fð ~XÞ can be inte-
grated over the spacetime to produce an action. We note
that in the units c ¼ 1 used in this Letter the quantity
1=ðG�Þ has dimensions of @. Thus, when (1) is integrated
over the manifold the result will have dimensions of @, as is
appropriate for the action.

Having in mind the construction just described, and
switching to the compact form notation, we can write our
action functional as follows:

SGR½A� ¼ 1

16�G�

Z
M
ðTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi ^ Fj

p
Þ2: (2)

This is the action principle that is the subject of this Letter.
To prove that (2) is indeed an action for general relativity

in disguise, we need to find the corresponding Euler-
Lagrange equations. The matrix of partial derivatives of
the function (1) with respect to the components of the
matrix ~Xij is given by

@f

@ ~Xij
¼ 1

16�G�
ðTr

ffiffiffiffi
~X

p
Þð

ffiffiffiffiffiffiffiffiffi
~X�1

p
Þij: (3)

Note that the inverse of ~Xij exists as is guaranteed by the
restriction that definite connections are considered. Note
also that, as is appropriate for a function of degree of
homogeneity one, we have

@f

@ ~Xij
~Xij ¼ fðXÞ: (4)

If we now define

Bi :¼ @f

@ ~Xij
Fj; (5)

then the Euler-Lagrange equations for (2) read

DAB
i ¼ 0: (6)

Here, DA is the covariant derivative with respect to the
connection Ai. We note that (6) is a set of 3� 4 second-
order differential equations for the 3� 4 components of
the connection Ai.

We now show that (6), together with the definition (5) of
the two-form field Bi are equivalent to the field equations
of Plebanski formulation of GR [1]. To this end we first

note that the two-form field (5) satisfies a set of algebraic
equations. Indeed, using the definition of ~Xij we have

1

4
~�����Bi

��B
j
�� ¼ @f

@ ~Xik

@f

@ ~Xjl
~Xkl ¼

�
Tr

ffiffiffiffi
~X

p

16�G�

�
2
	ij:

Thus, the two-form field (5) satisfies

Bi ^ Bj � 	ij; (7)

which is the basic equation of Plebanski’s formulation of
GR [1]. The Einstein equations then arise as follows. Given
a triple of two forms Bi satisfying (7) there is a canonically
defined real Riemannian signature spacetime metric
(determined by the condition that Bi (or Fi) are self-dual,
and that a multiple of Bi ^ Bi is the volume form). An
explicit formula for this metric can be given as an expres-
sion cubic in Bi, but will not be needed here. The Eqs. (6)
can be solved for the connection components Ai and the
Eq. (7) implies that the resulting SO(3) connection is the
self-dual part of the metric-compatible spin connection.
The Eq. (5) rewritten as

Fi ¼
�
@f

@ ~Xij

��1
Bj (8)

then implies that the curvature of the self-dual part of the
spin connection is self-dual as a two-form, which is equiva-
lent to the Einstein condition R�� � g��. For more details

on Plebanski formulation in the notations close to those of
this Letter the reader is referred to [11]. We have thus
shown that the (definite) solutions of our theory are in
one-to-one correspondence with solutions of general rela-
tivity. Indeed, the above discussion shows that any (defi-
nite) connection satisfying the field Eqs. (6) gives rise to an
Einstein metric (obtained by requiring Fi to be self-dual).
In the other direction, any solution of Einstein’s theory
gives rise to a (definite) solution of the theory (2) (by
considering the self-dual part of the metric-compatible
spin connection).
We note that the logic of the above proof of equivalence

to GR could be reversed, and one could derive (1) as the
only function of the matrix ~Xij of curvature wedge prod-
ucts such that the corresponding action produces Plebanski
field equations. Indeed, it is clear that the key point about
the particular choice (1) is that it leads to (7). This is the
case for

@f

@ ~Xij
� ðTr

ffiffiffiffi
~X

p
Þð

ffiffiffiffiffiffiffiffiffi
~X�1

p
Þij; (9)

where we need the trace prefactor in order to guarantee that
@f=@ ~X is of degree of homogeneity zero. This then inte-
grates to (1).
So far we have discussed the case of GR with nonzero

cosmological constant. Indeed, in the limit � ! 0 the
action (2) is singular. However, in this limit the (exponen-
tial of the) action present in the quantum mechanical path
integral of the theory can be viewed as a delta function
imposing the constraint
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Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi ^ Fj

p
¼ 0: (10)

This is the same equation as was found in [2] by rewriting
the� ¼ 0 general relativity in the pure connection formal-
ism. Indeed, the condition that the trace of the square root
of a matrix is equal to zero can be rewritten as an equation

on the matrix itself. For this we, as in [3], denote Yij �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi ^ Fj

p
, and write down the characteristic equation for Y:

Y3 � TrðYÞY2 þ 1
2ð½TrðYÞ�2 � TrðY2ÞÞY ¼ detðYÞ:

Now, multiplying by Y, taking the trace and using
TrðYÞ ¼ 0 we get

Tr ðY4Þ � 1
2½TrðY2Þ�2 ¼ 0: (11)

Rewriting this in terms of X ¼ Y2, Xij � Fi ^ Fj we get

Tr ðX2Þ � 1
2½TrðXÞ�2 ¼ 0; (12)

which is just the condition found in [2,3]. Thus, in the sense
described, our action (2) encompasses both � � 0 and
� ¼ 0 cases.

Finally, we present an alternative derivation of the action
(2) directly from the Plebanski formulation of GR, via the
same procedure as is followed in [3,5,6]. However, unlike
in these references we use a different set of invariants of
3� 3 matrices to solve for (eigenvalues), which allows us
to obtain a much more compact final result. In particular,
we are able to integrate over all the fields apart from the
connection, while the actions in [5,6], still contain an
auxiliary field. The Plebanski action for (Riemannian sig-
nature) GR with a cosmological constant � is a functional
of the connection Ai, an suð2Þ-valued two-form Bi, as well
as a field of Lagrange multipliers �ij. It is given by

SPleb ¼ 1

8�G

Z �
Bi ^ Fi � 1

2

�
�ij þ�

3
	ij

�
Bi ^ Bj

�
:

More details on this formulation can be found in, e.g., [11].
Integrating out the two-form field one gets the following
action

S½A;�� ¼ 1

16�G

Z �
�ij þ�

3
	ij

��1
Fi ^ Fj; (13)

where, as in [5,6], it is assumed that the matrix ð�ij þ
ð�=3Þ	ijÞ is invertible. It is now convenient to rescale the
Lagrange multipliers field and write the action as

S½A; ~�� ¼
Z
ð ~�ij þ �	ijÞ�1Fi ^ Fj; (14)

where

� :¼ 16�G�

3
; (15)

in units @ ¼ c ¼ 1, is a dimensionless quantity. Note that
��M2

�=M
2
p and so, for the observed value of the cosmo-

logical constant, is of the order �� 10�120.

In the final step we integrate out the Lagrange multiplier

field ~�ij. Let us drop the tilde on the symbol for brevity.
We can the rewrite the above action as

S½A;�� ¼
Z
ðvolÞTrðð�þ �IdÞ�1XÞ; (16)

where we have introduced Fi ^ Fj ¼ ðvolÞXij, and (vol) is
an arbitrary auxiliary four form on our manifold. To inte-
grate out the matrix� we have to solve the field equations
for it, and then substitute the result back into the action.
Assuming that the solution for� can be written as a matrix
function of X, we conclude that � will be diagonal if X is.
Thus, we can simplify the problem of finding � by using
an SO(3) rotation to go to a basis in which X is diagonal.
We then look for a solution in which � is also diagonal.
Denoting by �1, �2, �3 the eigenvalues of X

ij, and by a, b,
�ðaþ bÞ the components of the diagonal matrix�, we get
the following action functional to consider

F½a; b; �� ¼ �1

�þ a
þ �2

�þ b
þ �3

�� ðaþ bÞ : (17)

We now have to vary this with respect to a, b and substitute
the solution back to obtain the defining function as a
function of �i. Assuming that no of the denominators in
(17) are zero we get the following two equations

ð�þ aÞ2�3 ¼ ð�� ðaþ bÞÞ2�1;

ð�þ bÞ2�3 ¼ ð�� ðaþ bÞÞ2�2:
(18)

Taking the (positive branch of the) square root and adding
the results we get aþ b, which is most conveniently
written as

�� ðaþ bÞ ¼ 3�

ffiffiffiffiffiffi
�3

p
ffiffiffiffiffiffi
�1

p þ ffiffiffiffiffiffi
�2

p þ ffiffiffiffiffiffi
�3

p : (19)

The other two combinations that appear in (17) are given
by similar expressions. It is now clear that the sought
function of the matrix X is given by

fGRð�Þ ¼ 1

3�
ð ffiffiffiffiffiffi

�1

p þ ffiffiffiffiffiffi
�2

p þ ffiffiffiffiffiffi
�3

p Þ2 ¼ 1

3�
ðTr ffiffiffiffi

X
p Þ2:

Integrated over the spacetime manifold this is just our
action (2). This concludes our proof of the classical equiva-
lence of General Relativity with a nonzero cosmological
constant and the theory of connections (2).
Let us now briefly discuss the modifications necessary to

extend the above pure connection description of gravity to
the Lorentzian signature setting. In this case the self-dual
connections are SOð3;CÞ valued, and so all field become
complex valued. The action principle (2) must then be
supplemented with appropriate reality conditions. These
are similar to those in [1,3], and read

Fi ^ ðFjÞ� ¼ 0; ReðFi ^ FiÞ ¼ 0: (20)

The first set here says that the subspace in the space of two-
forms spanned by Fi is wedge-orthogonal to the complex
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conjugate subspace, which then implies that the conformal
metric defined by declaring Fi to be self-dual is real
Lorentzian. The second condition in (20) says that the
four-form Fi ^ Fi is purely imaginary, which guarantees
the full metric (including the conformal factor) is real.
Note that there are 10 reality conditions in (20), exactly
the number that is needed to require 10 metric components
to be real.

We conclude with a number of remarks. First, the for-
mulation (2) can be used as the starting point for a new type
of the gravitational perturbation theory. Here one expands
the action around the constant curvature background, and
the usual linearized GR solutions (gravitons) can be seen to
appear [8]. It would be very interesting to develop this line
of thought further and compute the graviton scattering
amplitudes as well as loop corrections using this formal-
ism. Work on these issues is in progress.

Another (potentially important) point about the formu-
lation (2) is that it immediately allows for a very large class
of generalizations. Indeed, we have seen that the construc-
tion of the action goes through for any homogeneous order
one and gauge invariant function fð ~XÞ. The function in (2)
is special because it guarantees (7), but other functions can
be considered. A large class of diffeomorphism invariant
SU(2) gauge theories is then possible, see, e.g., [8,12] for
earlier work. A very interesting feature of all these new
theories is that they describe just two propagating degrees
of freedom, see [13], exactly like general relativity. These
theories could be of importance for understanding the
ultraviolet behavior of gravity; see [8] for more details
on such potential applications.

Note also that it is a very interesting point about (2) that
it requires a nonzero �. Given that there is now a strong
observational evidence for a nonzero cosmological con-
stant, this seems to be a step in the right direction as
compared to the usual metric based GR whose action
principle works equally well with or without �.

Apart from possible applications in quantum gravity, the
new formulation (2) may prove instrumental in the classi-
cal domain. One promising direction appears to be to
questions about the moduli spaces of Einstein metrics on
four manifolds, see, e.g., [7], Chap. 12. The point is that
the linearization of the new functional (2) behaves differ-
ently with respect to diffeomorphisms than the lineariza-
tion of the Einstein-Hilbert functional. Indeed, one can
show that the linearized action is simply independent of
certain components of the connection (those which can
be changed by an action of a diffeomorphism). This is
completely different from the case of the Einstein-Hilbert
functional, where diffeomorphisms need to be gauge fixed
in a rather nontrivial fashion. Optimistically, this different
behavior may make some open rigidity questions about
Einstein metrics easier to tackle.

Apart from the above positive features, the new formu-
lation (2) has some difficulties that must be mentioned. The
first and foremost is that for applications in physics one
needs to know how all other matter couples to gravity. It is

not easy to describe this once gravity has been reformu-
lated as a theory of connections. Fortunately, a simple way
to couple the usual Yang-Mills gauge fields exists, see
[14,15], and also [16] for earlier work. The main idea
here is that enlarging the gauge group appropriately and
expanding the theory around the constant curvature back-
ground in the gravitational sector, one finds the usual Yang-
Mills action functional as describing the low energy
physics of the nongravitational gauge fields. It is much
more difficult to couple to (2) fermionic matter, and it is
clear that new ideas will be required here. Work on this is
in progress.
Another difficulty with the formulation (2), as well as

with the original Plebanski formulation [1], is that the
connection field is required to be complex valued (if one
is to reproduce the Lorentzian signature sector of GR).
Then reality conditions (20) need to be imposed, so that the
action (2) is varied among the gauge fields satisfying (20).
For the classical theory this is not much of a problem, but if
one wants to base on (2) a quantum mechanical treatment,
one has to take into account (20) in the path integral, which
is a difficult task. One possible way around this problem
could be to resort to the analytic continuation to the
Riemannian signature metrics, where the reality is trivial
to impose. However, it is not at all clear if there is a con-
sistent way to do this in the quantum theory. More work on
these issues is required.
The author would like to thank Ingemar Bengtsson for

pointing out the reference [4], and an anonymous referee
for pointing out works [5,6].
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