PRL 106, 250603 (2011)

PHYSICAL REVIEW LETTERS

week ending
24 JUNE 2011
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We provide the first exact calculation of the height distribution at arbitrary time ¢ of the continuum
Kardar-Parisi-Zhang (KPZ) growth equation in one dimension with flat initial conditions. We use the
mapping onto a directed polymer with one end fixed, one free, and the Bethe ansatz for the replicated
attractive boson model. We obtain the generating function of the moments of the directed polymer
partition sum as a Fredholm Pfaffian. Our formula, valid for all times, exhibits convergence of the free
energy (i.e., KPZ height) distribution to the Gaussian orthogonal ensemble Tracy-Widom distribution at

large time.
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The continuum Kardar-Parisi-Zhang (KPZ) equation is
the simplest equation describing the nonequilibrium
growth in time 7 of an interface of height A(x, 7) in the
presence of noise [1]. In one dimension, i.e., x € R, it
reads

3,h = vV2h + 1A(VR)2 + n(x, 1), (1)

where n(x, )n(x, ') = DS(x — x')8(r — ') is a centered
Gaussian white noise. Originally conceived to describe
growth by random deposition and diffusion, it defines a
universality class believed to encompass an astounding
variety of models and physical systems [2]. The growing
KPZ interface becomes, at large ¢, statistically self-affine
with universal scaling exponents. In d = 1, its width is
predicted [3] to grow as 8/ ~ 1173, as observed in experi-
ments [4,5]. The KPZ problem also maps to forced Burgers
turbulence [6], and to the equilibrium statistical mechanics
of a directed polymer (DP) in a random potential, the
simplest example of a glass [7] with applications to vortex
lines [8], domain walls [9], and biophysics [10]. However,
despite its importance and universality, the KPZ equation
has vigorously resisted analytical solutions.

Progress in analytical understanding of the KPZ class in
d = 1 came from exact solutions of a lattice DP model at
zero temperature [11], discrete growth models such as the
polynuclear growth model [12,13], asymmetric exclusion
models [14], and vicious walkers [15]. An analogous to the
height field h(x, 1) was identified, and in the large size
limit, its one-point (scaled) probability distribution was
shown to equal the (scaled) distribution of the smallest
eigenvalue of a random matrix drawn from the famous
Gaussian ensembles, the so-called Tracy-Widom (TW)
distribution [16], which appears in many other contexts
[17]. It was found [12,18] that one gets either the TW
distribution F,(s) of the Gaussian unitary ensemble or
F,(s) of the Gaussian orthogonal ensemble (GOE) for
droplet and flat initial conditions, respectively. The
corresponding many point distributions were identified as
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determinantal space-time processes, the Airy process, Ai,
for droplet, and Ai; for flat naturally expressed with the use
of Fredholm determinants [19].

These advances gave valuable, but only indirect, infor-
mation on the continuum KPZ equation, i.e., a conjecture
for its infinite ¢ limit (termed the KPZ renormalization
fixed point [20]). Only recently we [21], and other workers
[22-25], were able to directly solve the continuum problem
and, until now, only within the droplet initial condition. In
addition to the convergence to F,(s) at large ¢, the unveiled
remarkable feature is that a proper generating function g(s)
(recalled below) remains a Fredholm determinant for all
times ¢, hence leading to an exact solution for the universal
crossover in time in the continuum KPZ equation. This
universal distribution (depending on a single parameter ¢)
describes in the DP framework the high temperature re-
gime [21] that has remarkable universal features [26]. In
the growth problem, this corresponds to a universal large
diffusivity—weak noise limit, at fixed correlation length of
the noise.

In this Letter we obtain the corresponding exact result
for the continuum KPZ equation for the case of flat initial
conditions, most often encountered in experiments [5]. We
obtain here the generating function of the integer moments
of the DP partition sum Z = ¢%/2")" (see below),

0 (L —As\n
0=y

1
, A=3@YTE, @)
= n! 2

with ¢ = D/\%, T = 2v, as a Fredholm Pfaffian for any
time ¢. The DP free energy, and the height field at a given
point, take the form

@h = InZ = vot + A&, 3)
2v

where g,(s) = exp(—e*é~9). In the large time limit

8oo(8) =1im)_g,(s) = Prob(¢,<s) and we find
that the distribution variable &, converges to the GOE
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Tracy-Widom distribution Prob(&, <s) = F(s). As in
[21] we use the Bethe ansatz for the replicated boson
model with & attraction, and sum over all excited states,
treating now the case of a DP with one end fixed and the
other free. The calculation is far more complicated than
[21] as we need the spatial integrals of the Bethe wave
functions. Technically, this is surmounted by solving a
half-space model in the proper limit.

The solution of (1) for a given initial condition can be
written, using the Cole-Hopf transformation Z = ¢(Ao/22)h,

e o/20)h(xt) — f dyZ(x, ty, 0)eo/20h0t=0) (4

in terms of the partition function of a DP, at temperature
T = 2v and in the random potential V(x, 1) = Agn(x, 1),
i.e. the sum over paths x(7) € R starting at x(0) =y
and ending at x(z) = x (for a mathematical discussion
see, e.g., [27]),

(0= _ i
Z(X, tly; 0) _ [x XDX(’T)e (1/T) deT{(l/Z)(dx/dT)z+V[)C(T),’T]}’

x(0)=y

&)
with initial condition Z(x, = 0]y, 0) = 8(x — y). In this
continuum model the disorder correlation length is zero,
ie, Vix, DV, 1) =¢cd(t —)d(x — x') with ¢ = DAZ;
hence, one can perform a rescaling x — 73x/¢ and t —
273t/¢%, and work in units such that 7 = 1 and ¢ = 1, as
we do below. The continuum model (5) describes the high
T limit of the DP on a lattice as discussed in [21,26].
For the KPZ interface this continuum model describes
the universal limit where the characteristic time ¢* =
2(2v)°/D*X{ and space x* = /vr* scales are much larger
than the correlation lengths of the noise.

In [21] we obtained the distribution of InZ for a DP with
the two ends fixed Z = Z(0, #|0, 0). From (4) this corre-
sponds to a wedge initial condition for the KPZ interface,
é‘—g Pyedge (X, t = 0) = —wlx], in the limit of a narrow wedge
w — oo. Here we solve the flat interface initial conditions
for KPZ, i.e., h(x,t = 0) = 0, hence the opposite limit
w — 0" of the wedge. It corresponds to the DP with one
end fixed, one end free, i.e., Zy,(x, 1) = [dyZ(x, tly, 0).
To achieve that we found it easier to study the (left) half-
space problem

0
Z,(x 1) = f dyeZ(x, tly, 0), (6)

with Z(x, r = 0) = 0(—x)e"*. It is easy to show [28] that at
w = 07 the half-space model interpolates between (i) the
narrow wedge initial condition for x — +o00, since the
polymer is stretched, and (ii) the flat (full-space) initial
condition for hence, we study below
lim,_, o lim,_ Z,,(x, 1) = Zga(x, 7).

As is well known [29] the calculation of the nth integer
moment of a DP partition sum can be expressed as a
quantum mechanical problem for n particles described by
the (attractive) Lieb-Liniger Hamiltonian [30]

X — —00;

Do > S—x) (D
j=19%j

1=i<j=n

Generalizing [21], the quantum mechanical expectation
for Z,,(x, t)" is written as a sum over the un-normalized
eigenfunctions W, (of norm denoted || u ||) of H, with
energies £, [31]:

Z,(x, )" = ] ewz,-nzlyf(yl ooyl
<0

w 1
— Y x,...,x)f U, e (8)
2.Vl “ Tl

[ \If,u =/ ewz;]:‘yiqfu()’l""’yn)’ ©
yi<0

where we used the fact that only symmetric (i.e., bosonic)
eigenstates contribute. The Bethe states ¥, are superpo-
sitions of plane waves [30] over all permutations P of the
rapidities A; (j = 1, ..., n) and we use the convention

X)) = D Ap 1'[ eftre, (10)
P j=1

tcsgn(xi xk))

e Mux ... x)

‘I’#(xl, ‘e

where the coefficients Ap = [T,=¢=s=1(1 +

The general eigenstates are built by partltlonmg the n
particles into a set of n; bound states formed by m; = 1
particles with n = Z?;l m;. Because we work with
w = 07", we can take directly the system size L = oo,
and in that limit [32] each bound state is a perfect string,
i.e., a set of rapidities N = kj + %(mj + 1 — 2a), where
a=1,...,m j labels the rapidities within the string. Such
eigenstates have momentum K, = Z;’;, m k; and energy
E, =3 [mk; — %mj(mjz — 1)]. The ground state cor-
responds to a single n string with k; = 0.

In (8) one already knows W (x,...,x) = nle "2t
and the norms ||u|| of the string states [33]

L @ B
”:“” n'(LE)” l_[ m 1<ll<—J[<n ki,mi,kj,m;>
(k; — kj)2 + (m; — mj)2C2/4 (I
cI)k,-,m,-,kj,mj c=

(ki - k])2 + (mi + m])252/4

The new difficulty, i.e., computing the spatial integral of
the Bethe states, simplifies dramatically for the half-space
model. Using the symmetry of Eq. (10), we have

w lE
v, =ndGY (1 + 7)
[ g Z o nE{!:[kzl Ap, = Ap,
O | —
Avebe D i Ay + LA

From the remarkable properties of the Bethe ansatz, it can
be reexpressed, for any n and set of rapidities (with ¢ = 1),
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i+ Ao+ Ag = 2iw

w n!
v =
f P e (Aa = W) gy, At Ag — 20w
(12)

If we now inject the string solution A;, = %(mj +1-
2a) + k;, we find after some elementary manipulations

-[\I’ —l’l'( 2)nl_[Smk l_[ Dm i,k

I=i<j=n;
w _ Kii — l)
kT T o 13
ik F(Kii) ’ (13)
m +m
W _ Uk — mlzmj)r(Kij + m'zm')
m,ki,mj,k; F(Ki~ + mizmj)r(ij _ mizmj)y

We have now all the ingredients to compute the generat-
ing function (2) with Z = Z,,(x, ¢). Writing the sum over
states in (8) as all partitioning of n particles into n; strings
and using that for L — oo the string momenta m ;k; corre-

dk; _
Zk, — m;L S 7
m;L f K ), Eq. (2) becomes a sum over string configurations
g,\(s) =1+ Zn _ ,Z(ns, s) with

spond to free particles [33] (i.e.,

ng m,- _2
_ (M/3)m—4m k23— Am ;s
Z(ns)_ Z l—['/;ljlizlk-i-qe J I /

m;=1j=1

[<2,k 8k + ;) (—1)"i8
X Pf

We recall that for an antisymmetric matrix A of size 2n;

ng

(=D [TAvci-10) (16)
TESy,,,0(2j—1)<0(2)) i=1
with (PfA)?> = det A. We can now use the Airy trick [21,22]
]'[je(l/mg’"; =11, J,, Ai(y;)e™i and decouple the denom-
inators in the lower right corner using auxiliary integrals
I,/ 0,20 € ~vi4i = [+ and the numerators using deriva-

PfA =

tives. We perform rescahng ki — k; /A, and shifts yi—
yjtv;— 4k12» + 5. The summations over the m; can be

performed exactly inside the Pfaffian and we arrive at our

main result for g,(s) as a Fredholm Pfaffian

1
=PI+ K] = > —Z(n),
ng=0""5"

Z(n) =T [ PEK (v, ) o o0
=1 v;>0

whereJ=<_O [

ga(s)
(17)

I 0
matrix kernel of components K, =

) and K is an antisymmetric 2 by 2

K.(v;, v;) with

—12m)5(k;)

) ng
Zlnyx) = Z [
mu‘_l.]
m;
2 / S (m? 7mj)(t/lZ)*mﬂ(?t*x\mﬁ*ixmjkj
mj.k /
X l_[ Dm,-,k,,m_,-,kj(I)k,',mivk,,m_/' (14)
I=i<j=n,

Upon inspection we find that the limit of interest,

w = 07, is dominated by poles in the k; integrations, with
SW ( l)m ( l)”l} m;
m;,k; F(m YQ2ik;+2w) i(k;+k; )+2w mi,m;>

and that the regular parts do not contribute. Replacing
1/(ik + 0") — 78(k) yields an x-independent result,
which can be shown to equal the limit x — —o0, i.e., the
flat initial condition for KPZ, on which we now focus. The
result is the sum of the residues associated to configura-
tions where the n, = 2N + M strings split into N pairs of
strings of opposite momenta with the same particle number
m and M single strings of zero momentum with all distinct
number of particles. After some nontrivial manipulations,
detailed in [28], we bring the result in the form of a
Pfaffian:

w
and Dnli,ki,mj,k

m, +5Q2m)? (k)8 (k) (= 1ymntmem)sgn(m; —m;) - §(27)8(k;)
2ik;+m;—2ik;—m; (15)
2nyX2ng

2ik;+m;+2ik;+m;

K“:[ Ai(y, +v;+s+4kP)Ai(y, +v;+s+4k)
Yiy2.k !

e 2i(v;—v;)k 7T5(k)
X[Tfk/)L(e/\(}l+YZ))+

F(2eM1,2e ”2)]
K=y f Ai(y+s+v)(e 2" —1)8(v)),

y
Kny=25'(0, v, (4o
and the functions

—2akz F5(1;2 — 2ik, 2 + 2ik; —z)
sinhwk)['(2 — 2ik)['(2 + 2ik) '

sinh(z, — 7)) +t e 2 —e™@

fil2) =

F(Z,', Zj) =

(19)
+ ,[01 duJO[Z\/zlzz(l — u)][z, sinh(z,u)

— 25 sinh(zu)]

The full analysis of this result is performed in [28]. Here,
we first point out the simple one-string contribution
(ny=1),Z(1) = [, Ki2(v, v), leading to
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Z(1) = % f dy(e™ 2" — DAi(y + s), (20)

also obtained [28] from the ground state for each n, which
gives the leading asymptotics of g,(s) for large s > 0.

Using
A B1_ .
detl: c D] = detD det[A — BD~'C],

g3(s) = Det[I — JK] can be written (for any time) in a
form suitable for numerical evaluation [28]. The Pfaffian
reported above allows simpler analytic manipulations.

In the large time (large A) limit, one already sees from
(20) that Z(1) — — fy>0 AiQ2y + 5) = —TrB, where
B, = 0(x)Ai(x + y + 5)6(y) is the GOE kernel, as shown
by Ferrari and Spohn [34]. This extends to all ng; i.e., we
find that

tim () = (-1 [ dell B, x)l e @D

A—+oo Xee X
Hence g (s) = F,(s) = det[I — B,], the Fredholm deter-
minant expression for the GOE Tracy-Widom distri-
bution. This is obtained using lim,_, ;. f1/1(€?) = —0(y)
and lim_, ;o F(2eM1, 2e22) = 0(y; + y,)[0(y)0(—y,) —
0(y,)0(—y;)]. We checked (21) explicitly up to
ny = 4, but we report the proof in [28]. For n even, it
follows from a slight generalization of [34], namely,
det(I ¥ B,)/ det(l = B,) = [ _,(I = B,)"'(x,0).

To summarize we have obtained the generating function
for the distribution of the free energy of the DP with one
free end, i.e., of the height of the continuum KPZ interface,
for arbitrary time. At large time the distribution crosses
over to the GOE Tracy-Widom distribution F(s). Further
properties of the finite time, including extracting P(f) and
numerics, are studied in [28].
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numerical checks [28] of (i) low integer moments of Z at
small ¢ and (ii) the variance of InZ at large ¢. P. C. thanks
LPTENS, and P.L.D. thanks KITP for hospitality. This
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