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We consider a cloud of fermionic atoms in an optical lattice described by a Hubbard model with an

additional linear potential. While homogeneous interacting systems mainly show damped Bloch oscil-

lations and heating, a finite cloud behaves differently: It expands symmetrically such that gains of

potential energy at the top are compensated by losses at the bottom. Interactions stabilize the necessary

heat currents by inducing gradients of the inverse temperature 1=T, with T < 0 at the bottom of the cloud.

An analytic solution of hydrodynamic equations shows that the width of the cloud increases with t1=3 for

long times consistent with results from our Boltzmann simulations.
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Measuring the conductivity is probably the most funda-
mental experiment when investigating the properties of a
metal. The influence of constant forces arising from elec-
tric or gravitational fields on quantum particles in periodic
potentials is an old and well studied problem [1]. For free
particles, Bragg scattering from the periodic potential in-
duces Bloch oscillations [1–3]. While difficult to observe
in solids due to disorder and interactions, such Bloch
oscillations have been measured in semiconductor super-
lattices [4] and for ultracold bosonic atoms in optical
lattices [2,3] created by standing waves of lasers, e.g., to
determine the masses of atoms with high precision [5].

Recent experimental developments make it also possible
to load fermionic ultracold atoms in the lowest band of
optical lattices. Using an equal population of two hyperfine
levels and Feshbach resonances (e.g., of 40K) it became
possible to realize the Hubbard model (see below) with
tunable interaction strength. While the temperatures in
current experiments are still rather high, it was possible
to see [6,7] signatures of the onset of a metal-insulator
transition induced by strong interactions. Constant external
forces can be realized using either gravitation or acceler-
ated lattices [2] (after a careful elimination of other con-
fining potentials as in Ref. [8]).

The Hubbard model in an electric or gravitational field
has attracted previously considerable attention [9–16], par-
tially motivated by the question how large electric fields
can lead to a breakdown of the Mott insulating state. When
discussing the physics of such systems either for weak or
strong interactions, it is important to take energy conser-
vation into account. While real solids are usually probed in
contact with some thermal bath, ultracold atoms provide
almost ideal realizations of closed quantum systems im-
plying severe restrictions on the dynamics. For a transla-
tionally invariant, infinite system one expects that even
weak interactions lead to a damping of the Bloch oscilla-
tions (at least in the absence of superfluidity and in dimen-
sions larger than 1). During this process, potential energy is

converted into heat. As long as there is no coupling to an
external bath which can transport the heat away, the system
gets hotter and hotter. It finally reaches a steady state
characterized by an infinite temperature and vanishing
current. For moderately strong interactions we expect
that the same steady state is reached, but Bloch oscillations
may become overdamped. Finally, in the Mott regime, the
currents and dissipation are exponentially suppressed for
small fields [9,10], but in the long-time limit heating up to
T ¼ 1 is expected. While we are not aware of a study
which carefully tests this plausible picture, it seems to be
consistent with the available numerical results, e.g., the
short-time behavior extracted from dynamical mean-field
equations studied by Eckstein, Oka, and Werner [9].
Here we argue that the physics of an inhomogeneous

system, i.e., a finite atomic cloud, is rather different; see
Fig. 1. For bosons, this question has been studied using the
Gross-Pitaevskii equation [14,15]. The motion of the sys-
tem is governed by energy conservation and the fact that
the kinetic and interaction energies per atom are bounded
not only from below but also from above (assuming that
the optical lattice is sufficiently deep that interband tran-
sitions can be safely neglected). Energy conservation pro-
hibits that the cloud as a whole moves up or down over

FIG. 1 (color online). Atomic cloud in an optical lattice in the
presence of gravity. A symmetric expansion of the cloud is
possible by transporting energy ‘‘uphill’’ as atoms lose potential
energy at the bottom and gain it at the top. This energy current is
associated with a gradient of 1=T with T < 0 (T > 0) at the
bottom (top) of the cloud.
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long distances. For noninteracting particles this implies
that only Bloch oscillations are possible. With interactions
a second possibility arises: energy conservation allows that
the cloud expands symmetrically, losing potential energy at
the bottom and gaining it at the top of the cloud. To this
end, energy has to be transported over macroscopic dis-
tances upwards. We can expect that the interacting system
explores this part of the phase space: the cloud expands.
For a sufficiently large cloud and not too strong driving
forces, one can expect that most of the system is approxi-
mately in local equilibrium such that a local temperature
can be defined. The presence of an energy current and the
absence of a particle current in the center of the cloud
implies a gradient in temperature or rather in � ¼ 1=T.
Combining this insight with the expectation that T ! 1 in
the center of the cloud for long times (as in the homoge-
neous system), we obtain the situation sketched in Fig. 1:
The cloud expands, using an energy current driven by a
gradient of � ¼ 1=T with T > 0 at the top of the cloud and
negative absolute temperatures, T < 0, at the bottom. The
numerical confirmation of this qualitative picture by a
Boltzmann simulation and the associated quantitative the-
ory presented below are the main results of this Letter.
Note that negative T, i.e., systems where high-energy states

have a higher occupation, e�E=kBT , than low-energy states,
are well defined for closed systems with an upper bound in
energy. In Ref. [17] we discuss how T < 0 can be realized
and detected.

To substantiate our picture, we study the dynamics of a
cloud governed by a two-dimensional (2D) fermionic
Hubbard model in the presence of a gravitational force,

H ¼ �J
X
hiji;�

cyi�cj� þU
X
i

ni"ni# þ
X
i;�

Vini�;

Vi ¼ grxi ;

(1)

with hopping rate J and interaction U. The number of
atoms of spin � at site i located at position ri is given by

ni� ¼ cyi�ci�. We set the lattice constant a ¼ 1 in the
following. The constant force g is applied in the x direc-
tion, and this term prohibits equilibrium at finite T. As we
are mainly interested in the dynamics in this direction, we
consider for simplicity a translationally invariant system in
the y direction. Initially the system is in equilibrium at a
given T ¼ J (a typical temperature for current experi-
ments), confined by an extra harmonic trap in the x direc-
tion, which is switched off at t ¼ 0. For g ¼ 0, the
Hamiltonian (1) has been realized in Ref. [8] where
the expansion dynamics was studied also theoretically.
Considering a 2D instead of a 3D setup has the advantage
that in experiments it allows one to change the value of g
by tilting the 2D lattice. While g � J can be reached easily
in experiments [8], we are more interested in a regime
where g is much weaker. As an alternative to tilting, one
can also use accelerated lattices [2].

For not too large values of U and g, the system can be
described by a semiclassical Boltzmann equation. As for
an inhomogeneous system this is a numerically demanding
integro-differential equation, we employ a version of the
relaxation time approximation [8] where both particle
number and energy is conserved:

@tfþ vk � rrfþ F � rkf ¼ � 1

�ðn; eÞ ðf� f0n;eÞ: (2)

Here, fðr;k; tÞ is the occupation probability in phase space
and the force term F ¼ �rrðgxÞ �Urrnðr; tÞ contains
the external potential and interaction corrections on the
Hartree level. The velocity is defined as vk ¼ rk�k with
the dispersion relation �k ¼ �2J½cosðkxÞ þ cosðkyÞ�. The
parameters Tðr; tÞ and�ðr; tÞ of the Fermi function f0n;e are
determined from n ¼ 1

4�2

R
d2kf0ð�k ��; TÞ and e ¼

1
4�2

R
d2k�kf

0ð�k ��; TÞ, where n ¼ n" ¼ n# ¼ nðr; tÞ
and e ¼ eðr; tÞ are the local particle and kinetic energy
densities per spin, respectively. We use a scattering rate
1=�ðn; eÞ �U2 which arises from interparticle scattering
with momentum transfer to the lattice (umklapp) and
which was determined in Ref. [8] to reproduce the e- and
n-dependent diffusion constant of the Hubbard model to
order U2 (obtained from an independent calculation). In
the regime of high T, relevant for our study, 1=�ðn; eÞ �
nð1� nÞ=�0 is approximately independent of temperature
with 1=�0 � 0:609U2=J in D ¼ 2 (see Ref. [8] for more
details).
A typical result of the Boltzmann equation is shown in

Fig. 2. In the gravitational potential, the cloud falls initially
until energy and temperature profiles become antisymmet-
ric relative to the center of the cloud such that T ¼ 1 in the
center. For the parameters of Fig. 2, Bloch oscillations of
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FIG. 2 (color online). Densities nðx; tÞ (red) and inverse local
temperatures �ðx; tÞ ¼ 1=Tðx; tÞ (blue dots) from the Boltzmann
simulation for U ¼ J and g � 0:13J. The expansion is associ-
ated with a 1=T gradient with T < 0, T ¼ 1, T > 0 at the
bottom, in the center and at the top of the cloud, respectively.
For long t, � approaches �ð1Þ ¼ �@xn=ðn@xVÞ (green). In the
tails, local temperatures cease to be a useful concept and the
noise reflects Bloch oscillations.
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the center x0ðtÞ �
R
dxxn are overdamped but become

visible for weaker interactions; see inset of Fig. 3. Note
that there are always Bloch oscillations in the tails of the
cloud where low densities prohibit scattering. The most
prominent feature is, however, the symmetric expansion of
the cloud in the long-time limit. The width of the cloud
increases slowly; see Fig. 3. For the local temperatures
(defined above) one observes the formation of a gradient in
1=T with negative (positive) absolute temperatures at the
bottom (top) of the cloud. As discussed above, this gradient
is associated to the heat currents needed for the symmetric
expansion of the cloud.

To obtain an analytic theory of the effects described
above, we derive the hydrodynamic equations for nðr; tÞ,
and eðr; tÞ in the regime where the scattering time is
smaller than the Bloch oscillation period, g�=2� � 1.
The opposite limit of weakly damped Bloch oscillations
is briefly discussed in the conclusions. We use the standard
approach to expand the Boltzmann Eq. (2) to linear order
around the local equilibrium distribution f0e;nð�kÞ. As we
are interested in the dynamics for long times, we use that T
will become very high and n small with

T ¼ �4J2n=e (3)

to leading order. Using also that 1=� � n=�0 in this limit,
we obtain (see supplement [18])

@tnþrjn ¼ 0; @teþrje ¼ �jnrV; (4)

jn ¼ � J2�0
n

�
2þ e2

16J2n2

�
rnþ �0e

2n
rV þ �0e

8n2
re;

je ¼ � 3J2�0
2n

reþ 3�0e
2

8n2
rV; (5)

where jn and je are particle and energy currents. Above we
have included all subleading terms in the high-T expan-
sion, which contribute in the t ! 1 limit according to the

analysis below. Kinetic energy is created by Joule heating
with the rate �jnrVðxÞ where VðxÞ ¼ gxþUnðxÞ in-
cludes Hartree corrections.
Note that the hydrodynamic equations can be also de-

rived directly from the Hubbard model. Up to changes in
numerical prefactors, Eqs. (4) and (5) therefore should be
exact for the large T limit of the Hubbard model in dimen-
sions D> 1 for large clouds and weak potentials V (the
breakdown of the hydrodynamic equations found for
g ¼ 0 in [8] is not important here). In that sense, our
analysis and results below do not rely on our specific
Boltzmann equation. Also note that the 1D case is more
subtle due to the integrability of the Hubbard model.
Surprisingly, it is possible to analyze the long-time limit

of the nonlinear, coupled partial differential Eqs. (4) and
(5) analytically. Measuring distance x relative to the center
off mass, we start from the scaling ansatz

nðx; tÞ ¼ N0

1

RðtÞF½x=RðtÞ�; (6)

where F is a dimensionless scaling function of unit width
and

R
dzF½z� ¼ 1 such that N0 ¼

R
dxn, R2ðtÞ ¼R

dxx2n=N0. Our goal is to calculate both RðtÞ and F½z�
in the long-time limit where RðtÞ is large. On the top panel
of Fig. 4 we show the scaling function F obtained by
rescaling the density profiles from the Boltzmann simula-
tion according to Eq. (6). To obtain a scaling ansatz for e,
the most important step is to realize that to leading order,
energy conservation prohibits expansion. We therefore set
e ¼ e0 þ�e, and determine e0 by setting j

x
n ¼ 0 in Eq. (5)

for e ¼ e0 (neglecting subleading terms / e2). This leads
to the ansatz

e0 ¼ 4J2

@xV
@xn; e ¼ e0 þ J

RðtÞ1þ�
G½x=RðtÞ�; (7)
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FIG. 3 (color online). To a good approximation, the cloud
radius cubed grows linearly in time, R3ðtÞ � ðt-t0Þ, for a wide
range of U and g. Inset: Center of mass of the cloud x0ðtÞ
showing damped Bloch oscillations for weak U.
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taken from our simulation.
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with an unknown exponent � > 1 (such that�e � e0) and
a new scaling function G. To check whether e � e0 to
leading order approximation, we compare 1=T from our
numerical data to Eq. (3) with e � e0 and find excellent
agreement (see Fig. 2). While this provides already a
precise, quantitative theory for the temperature gradient,
only corrections to e0 determine how the cloud expands.

From the particle number continuity equation in Eq. (4)
we can calculate jxn ¼ �R

x @tnðx0; tÞdx0 ¼ N0xFR
�2 _R us-

ing Eq. (6), which has to be equivalent to jxn in Eq. (5). We
can match the scaling dimension of this term to the sub-
leading terms proportional to�e if R��1 _R ¼ const, imply-
ing that

RðtÞ ¼ �0

�
�0J

4

N0g
2

�
1=�ðt-t0Þ1=�; (8)

where �0 and t0 are integration constants and the other
prefactors of RðtÞ have been chosen for later convenience.

We can now substitute these results into the energy
continuity equation, Eq. (4), from which we obtain terms

proportional to t�1, t�3=�, t�1�2=� and t�2�1=�. From the
condition that the two leading terms have to cancel to fulfill
energy conservation, we obtain

� ¼ 3; R� t1=3; (9)

@3z logF½z�¼�3
0

18
zF½z�; F½z��e�z2=2ffiffiffiffiffiffiffi

2�
p þOð�3

0Þ; (10)

G½z� ¼ 2N0J
3

g3

�
�3
0zF½z�2
3

þ F0½z�3
F½z�2 � 2F0½z�F00½z�

F½z�
�
: (11)

Therefore, we conclude that the width of the cloud in-

creases with t1=3 for long times in the diffusive regime.
In comparison, subdiffusive exponents ��1 � 1=4 [15]
and ��1 ¼ 0:19 [14] have also been obtained for bosons
within time-dependent mean-field theory. The parameter
�0 and therefore the shape of F depend on the initial
conditions but for our simulations we find that �3

0=18 is

small and therefore the rescaled density profile F is close to
a Gaussian according to Eq. (10).

Figure 4 shows that the analytic approach describes the
results of the Boltzmann simulations with high precision.
We combine Eqs. (7) and (11) to predict

�e � 2

g�0
njxn þ 2J4ð@xnÞ3

g3n2
� 4J4nð@xnÞð@2xnÞ

g3n2
: (12)

Testing this relation numerically, we find good agreement
even for this subleading term; see Fig. 4. As expected, our
hydrodynamic equations are, however, not valid in the tails
of the cloud where 1=� is small.

In conclusion, we have shown that interactions lead to a
symmetric expansion of fermionic clouds in optical lattices

subject to a constant force. In the limit where the scattering
time is short compared to a Bloch oscillation period, � �
tB ¼ 2�=g, we derived analytically a precise quantitative
theory for the expansion of the cloud based on hydrody-
namics. It is an interesting question for further studies to
investigate analytically also the opposite limit, � � tB,
where diffusion constants are proportional to 1=� instead
of � as only scattering allows the atoms to move forward.
Nevertheless, energy conservation will again lead to a
symmetric expansion, however, with reduced speed. For
t ! 1 one reaches this regime for arbitrary U as for t �
N4

0=ð�3
0gJ

4�40Þ one always obtains � � tB. For moderately

strong interactions, however, we expect that atomic losses
will make it very difficult to track experimentally the
system for such long times.
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