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Symmetry of entangled states under a swap of outcomes (‘‘envariance’’) implies their equiprobability

and leads to Born’s rule pk ¼ jc kj2. Here I show the converse: I demonstrate that the amplitude of a state

given by a superposition of sequences of events that share the same total count (e.g., n detections of 0 and

m of 1 in a spin- 12 measurement) is proportional to the square root of the fraction—square root of the

relative frequency—of all the equiprobable sequences of 0’s and 1’s with that n and m.
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Probability has been tied to symmetry since its incep-
tion: Laplace [1] used complete ignorance—e.g., indiffer-
ence of the player to shuffling of the deck when face values
of the cards are not known—as evidence of invariance, to
define equiprobability. However, the symmetry captured
by this ‘‘principle of indifference’’ is subjective: It does not
reflect the state of the deck (shuffling changes the order of
the cards) but only subjective ignorance of the observer
who is unable to predict whether permuting their order will
result in a favorable or an unfavorable event.

The envariant approach to probabilities [2–4] is based on
symmetry—on the observation that when a perfectly en-
tangled state of any two systems is ‘‘swapped’’ on one end,
local states of these systems cannot change: Imagine a Bell
state j~iSj}iE þ j€iSj|iE of ‘‘a system’’ and ‘‘an envi-
ronment’’ S and E, respectively. One can use its symme-
tries to prove that the local state of either is completely
unknown. The proof is simple: Correlations between pos-
sible outcomes in S and E can be manipulated locally.
Thus, one can swap j~iS and j€iS by acting only on S:

Such a unitary swap exchanges probabilities of the two
possible outcomes ~ and € (hence its name). This is
obvious, as E is untouched by the swap. Therefore, the
‘‘new’’ postswap probabilities of ~ and € (that before
matched probabilities of } and|, respectively) must now
match the (unchanged) probabilities of | and } instead.

However, the global initial state of the whole composite
SE can be restored by a counterswap in E:

This means that probabilities of ~ and € are both ex-
changed (by the swap on S) and unchanged (because a
counterswap in E restores the whole entangled state with-
out touching S). This ‘‘exchanged yet unchanged’’ require-
ment can be met only when the two probabilities are equal:
p~ ¼ p€. With the usual normalization—certainty corre-
sponding to the probability of 1—we get p~ ¼ p€ ¼ 1=2.

Note that for a general entangled state, e.g.,

�j~iSj}iE þ �j€iSj|iE
with � � �, this proof would fail (as it should). However,
envariance is still useful: Swaps are no longer envariant,
but rotation of phases of the coefficients in S by a
local unitary e�i’j~iSh~j þ j€iSh€j can be undone by
ei’j}iEh}j þ j|iEh|j. Thus, envariance implies decoher-
ence—phases of the complex coefficients in the Schmidt
decomposition do not matter: Probabilities can depend
only on their absolute values [2–4]—their amplitudes.
Schmidt decomposition (with orthonormal partner

states in S and E) is essential: Local unitarities can alter
phases of the coefficients ‘‘one at a time’’ only when
corresponding states are orthogonal. Moreover, the abso-
lute values of the coefficients have any significance only
when states are normalized in the same way. This was key
in proving equiprobability. (The overall norm or phase of
the entangled state, by contrast, do not matter for us here.)
Envariant proof of equiprobability works for equal ab-

solute values of Schmidt coefficients. The case of unequal
coefficients can be always reduced to the case of equal
coefficients. To illustrate how, we change notation
(� ! ffiffiffi

n
p

, j~iS ! j0i, j€iS ! j1i, etc.) and consider

jc SEi /
ffiffiffi
n

p j0ij"0i þ
ffiffiffiffi
m

p j1ij"1i:
When n � m swaps are no longer envariant, as counter-
swaps do not restore the initial state,

ffiffiffi
n

p j0ij"0i þffiffiffiffi
m

p j1ij"1i �
ffiffiffiffi
m

p j0ij"0i þ
ffiffiffi
n

p j1ij"1i. We assume that m
and n are integers and that the Hilbert space of E is either
large enough or can be enlarged to allow for a basis change:
j"0i ¼ ðPn

i¼1 j�iiÞ=
ffiffiffi
n

p
, j"1i ¼ ðPmþn

i¼nþ1 j�iiÞ=
ffiffiffiffi
m

p
, so that

jc SEi /
ffiffiffi
n

p j0i
�
1ffiffiffi
n

p Xn
i¼1

j�ii
�
þ ffiffiffiffi

m
p j1i

�
1ffiffiffiffi
m

p Xmþn

i¼nþ1

j�ii
�
:

In effect, coefficients are replaced by counting:

jc SEi / j0iXn
i¼1

j�ii þ j1i Xmþn

i¼nþ1

j�ii:

Now, each j0ij�ii and each j1ij�ii have the same coeffi-
cient so we can again appeal to swaps. It follows that (as
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a result of deliberate ‘‘fine graining’’ of j"0i and j"1i) the
probability of every j0ij�ii and j1ij�ii is the same, p0;i ¼
p1;i ¼ 1

mþn . We prove this by using envariance: Consider

an additional E0 that entangles with SE so that jeii, its
orthogonal states, become correlated with j�ii,

j�SEE0 i / j0iXn
i¼1

j�iijeii þ j1i Xmþn

i¼nþ1

j�iijeii: (1)

Now a swap of jeki with jeli is undone by a swap of
j0ij�ki with j1ij�li in SE. Thus p0;i ¼ p1;i ¼ 1

mþn . If we

assumed additivity (i.e., p0 ¼ P
n
i p0;i; p1 ¼ P

mþn
i¼nþ1 p1;i),

probabilities proportional to squares of the coefficients in
jc SEi would follow:

pð0Þ ¼ n

mþ n
; pð1Þ ¼ m

mþ n
: (2)

Envariance under swaps reveals the physical origins of
Born’s rule [5]. By contrast, Gleason’s measure-theoretic
proof [6] made no contact with physics.

Deducing equiprobability from invariance under swaps
is the key physical insight. Moreover, with envariance
one can avoid assuming additivity. (Gleason assumed
additivity at the outset.) This is obvious for m ¼ 1, as
then pð0Þ ¼ n

nþ1 and pð1Þ ¼ 1
nþ1 . The first equality fol-

lows from the normalization (union of an event and its
logical complement is certain, so a sum of their proba-
bilities is 1). Using finite induction that starts with this
simple case, one can show, without assuming additivity
of probabilities [4], that pð0Þ ¼ n

mþn and pð1Þ ¼ m
mþn

[Eq. (2)]. So, deriving Born’s rule does not require addi-
tivity. (Additivity is also not needed in the classical
equiprobability-based approach [7].) This is important,
as in a theory with an overarching additivity principle
(quantum principle of superposition) imposing another
additivity demand (that is at odds with the superposition
principle, e.g., in double slit experiments) is problematic.
Envariance of Schmidt coefficient phases—decoherence
pointed out earlier—is behind this ‘‘emergent additivity.’’

The discussion above relied on commensurate (squares
of) the coefficients. The incommensurate case is handled
[2–4] by the appropriate limiting argument and the as-
sumption that probability is a continuous function of
premeasurement states. Then, for any state, one always
can devise commensurate sequences of states that converge
on it and bound probabilities it implies from above and
below. This ‘‘Dedekind cut’’ strategy is straightforward.
Commensurate state sequences used to implement it are
amenable to the envariant treatment described above.

We now have a clear and physically well motivated
derivation of Born’s rule from the basic ‘‘no-collapse’’
principles of quantum theory and from the assumption
that probability of measurement outcome is continuous in
the premeasurement state. Our goal is, in a sense, to reverse
it. We shall now appeal to symmetries of entangled states
to show that the amplitude is proportional to the square
root of the number of ‘‘favorable outcomes.’’

Consider a collection of M identical copies of S:

j �c Si ¼
OM
k¼1

ð�j0i þ �j1iÞk:

Memory cells of the apparatusA entangle with the system
in course of the (pre)measurement leading to

j ��SAi¼OM
k¼1

ð�j0ija0iþ�j1ija1iÞk¼
OM
k¼1

j�SAik: (3a)

We could include environment and decoherence and dis-
cuss interactions that correlate outcome states of S with E,
disseminating the measurement result throughout E and
making it objective via quantum Darwinism [3,8,9]. States
in each of M instances would have a form

j�SAEik ¼ ð�j0ija0i �L
i¼1 j"0ii þ �j1ija1i �L

i¼1 j"1iiÞk:
Such a detailed description with multipartite E would
complicate notation and obscure the essence of what fol-
lows. We work with the simpler j ��SAi representing
the whole ensemble. Indeed, one could ‘‘absorb’’ the en-
vironment by regarding E as a part of A and redefine
the notation so that ja0i ¼ ja0i �L

i¼1 j"0ii and ja1i ¼
ja1i �L

i¼1 j"1ii. Whether the reader decides to implement
this change of notation will not matter.
As before, we begin with the case of equal coefficients

� ¼ �. The state vector j ��SAi is then envariant under a
swap ðj0ih1j þ j1ih0jÞk acting on k’s member of the en-
semble, as such a swap can be undone by a counterswap
ðja0iha1j þ ja1iha0jÞk acting on A. This envariance under
swaps is preserved when the state of the whole ensemble is
expanded into the sum of the form

j ��SAi / XM
m¼0

j~smi; (3b)

where each unnormalized j~smi represents all sequences of
outcomes and records that yield m detections of ‘‘1’’:

j~s0i ¼ j00 . . . 0ijA00...0i;
j~s1i ¼ j10 . . . 0ijA10...0i þ j01 . . . 0ijA01...0i þ � � �

þ j00 . . . 1ijA00...1i;
. . .

j~smi ¼ j11 . . . 1100 . . . 0ijA11...1100...0i þ � � �
þ j00 . . . 0011 . . . 1ijA00...0011...1i;. . .

j~sMi ¼ j11 . . . 1ijA11...1i: (4)

Above, the memory state of the apparatus is the product of
the record states of individual measurement outcomes,
e.g., jA10...0i ¼ ja1i1ja0i2 . . . ja0iM. All outcome sequence
states and all records sequence states are orthonormal.

Thus, writing the state j ��SAi as above—as a sum over
sequences of outcome states and corresponding record
states—constitutes its Schmidt decomposition.
There are M!

m!ðM�mÞ! outcome sequence states in j~smi.
Thus, the probability of m detections of 1 is proportional
to ðMmÞ. This is because every outcome sequence state is
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equiprobable—it can be envariantly swapped with any
other outcome sequence state—and, as noted earlier,
phases do not matter. For instance, j00 . . . 0i in j~s0i can
be swapped with j10 . . . 0i in j~s1i. The preswap j ��SAi can
be restored by a counterswap of the corresponding jA00...0i
with jA10...0i. When � ¼ �, relative normalizations of all
such sequences are the same. Envariance shows that every
permutation of outcomes has a probability of 2�M, regard-
less of the number of 1’s. This includes sequences with
unlikely total counts such as j~s0i and j~sMi.

Such ‘‘maverick’’ sequences were regarded as a threat to
the predictive power of quantum theory in interpretations
that rely on purely unitary evolutions [10–12]: Their pres-
ence made it impossible to establish Born’s rule, as there
was no way to relate coefficients of outcome states to their
probabilities, so every state in the superposition could even
be equally likely. One could get rid of maverick branches
by asserting that states with sufficiently small amplitude
are impossible for some reason [13], or letM ¼ 1 (so that
‘‘maverick coefficients’’ disappear [14]), but there are valid
concerns [15] about such ad hoc strategies. Envariance
makes it clear why such extraordinary measures are not
needed: The numbers of maverick sequences are dwarfed
by the equally probable ‘‘run of the mill’’ sequences. This
argument could not be made earlier, as it uses an indepen-
dent envariant proof of equiprobability.

We now return to the basic question: how to relate the
probability of a specific count of, say, m 1’s with the
amplitude of the corresponding state. Our discussion has
prepared us for this. We address it operationally by adding
a counter C—another quantum system (e.g., a special
purpose quantum computer)—that computes the number
of 1’s in each record sequence of the apparatus:

j ��SACi /
XM
m¼0

j~smijcmi: (5a)

Here jcmi are orthonormal states of C that correspond to the
distinct totals. We now apply envariance to j ��SACi and use
it to deduce the probability of a specific count ‘‘m.’’

To do this, we first normalize states j~smi in Eq. (5a).
(Without normalization, amplitudes have no meaning.)
This is simple: Every sequence of 0’s and 1’s has the
same norm. Therefore, the number of sequences with the
total count of m 1’s yields the norm of j~smi: h~smj~smi / ðMmÞ.
Note that, at this stage, we are just carrying out a mathe-
matical operation that obtains from j~smi the corresponding
normalized state that can be legally used to implement the
Schmidt decomposition. Coefficients of unnormalized
states have no mathematical (or physical) significance.

It is easy to see that states

jsmi ¼ j~smi
� ffiffiffiffiffiffiffiffiffiffiffiffi

M
m

� �s
(6a)

have the same normalization. The state of the whole en-
semble amenable to envariant treatment is then

j ��SACi /
XM
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
M
m

� �s
jsmijcmi ¼

XM
m¼0

�mjsmijcmi: (5b)

This is also a Schmidt decomposition, as jsmi and jcmi are
orthonormal. Given our previous discussion, we already
know that the probability pm of any specific count m is
given by the fraction of such sequences. That is,

pm ¼ 2�M M
m

� �
: (6b)

This follows from the direct count of the number of envar-
iant (and, hence, equiprobable) permutations of 0’s and 1’s
contributing to jsmi and, hence, corresponding to jcmi.
So, (5b) shows that the amplitude �m of jcmi—of the
‘‘outcome state’’ for an observer enquiring about the count
of 1’s—is proportional to the square root of the number of
equiprobable sequences that lead to that count:

j�mj /
ffiffiffiffiffiffiffiffiffiffiffiffi
M
m

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M!

m!ðM�mÞ!

s
: (7)

This reasoning ‘‘inverts’’ derivation of Born’s rule [2–4].
We have now deduced that absolute values j�mj of Schmidt
coefficients are proportional to the square roots of cardin-
alities of subsets of 2M equiprobable sequences – states that
yield such ‘‘total count ¼ m’’ composite events.
The crux of the derivation was writing the same global

state j ��SACi as two different Schmidt decompositions:

j ��SjACi/ j00...0iðjA00...0ijc0iÞ
þj10...0iðjA10...0ijc1iÞþj01...0iðjA01...0ijc1iÞ
þ���þj00...1iðjA00...1ijc1iÞ

���
þj11...1100...00iðjA11...1100...00ijcmiÞ
þ���þj00...0011...11iðjA00...0011...11ijcmiÞ

���
þj11...1iðjA11...1ijcMiÞ (8a)

for the split SjAC of the whole into two subsystems, and

j ��SAjCi /
XM
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
M
m

� �s
jsmijcmi ¼

XM
m¼0

�mjsmijcmi (8b)

for the SAjC split. The location of the border between the
two parts of the whole SAC is the key. It defines ‘‘events of

interest.’’ The top j ��SjACi parallels Eq. (4). It treats binary
sequences of outcomes as events of interest and, by envar-
iance, assigns equal probabilities 2�M to each outcome

sequence state. By contrast, in j ��SAjCi the total count m
is an event of interest, but now its probability can be deduced

from j ��SjACi, as both represent the same physical situation.

The relation of the coefficients of states jcmi in j ��SAjCi
and equiprobable events in j ��SjACi is straightforward:

States representing composite events are resultant vectors
in the Hilbert space—superpositions of more elementary
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events. Quadratic dependence of the probability on ampli-
tude reflects the ‘‘Euclidean’’ nature of Hilbert spaces,
where the length of the resultant vector is given by the
Pythagorean theorem for orthogonal component states.

Generalization to the case when � � � is conceptually
simple. The global state after the requisite adjustment of
relative normalizations is then

j ��SACi/
XM
m¼0

M
m

� �
1=2

�M�m�mjsmijcmi¼
XM
m¼0

�mjsmijcmi:

Coefficients �m that multiply jsmijcmi combine on equal
footing preexisting amplitudes � and � from the initial
state, Eq. (3a), with square roots of the numbers of corre-
sponding outcome sequences. An observer presented with
a state

P
M
m¼0 �mjsmijcmi can assess probabilities of out-

comes jsmijcmi without delving into combinatorial origins
of �m. For instance, he could implement envariant deriva-
tion ‘‘from scratch,’’ starting with whatever coefficients are
there in the initial state, and fine graining [as before,
Eq. (1)], to deduce the probabilities of various outcomes.

Derivation of amplitudes of composite events from num-
bers of equiprobable elementary events turns the tables on
an old problem. It employs only an ascetic subset of ‘‘text-
book’’ [16] quantum postulates: (i) States ‘‘live’’ in Hilbert
spaces. (ii) Evolutions (including measurements) are uni-
tary. Entanglement is enabled by ‘‘postulate (o)’’: Hilbert
spaces of composite systems have tensor structure. This is
essential for envariance. The need for probabilities is
apparent in a ‘‘relative states’’ point of view [10] and can
be further motivated by the repeatability postulate.
(iii) Immediate repetition of a measurement yields the
same outcome. It implies orthogonality of outcomes (or,
what is more relevant, of record states ja0i, jA0...0i, or jcmi)
accounting for quantum jumps—in effect, for the ‘‘wave-
packet collapse’’ [17]. It is a quantum embodiment of
‘‘communicability’’ of outcomes emphasized by Bohr
[18]. Normalization of outcome states in the Hilbert spaces
of S, A, and C is important. It is a mathematical require-
ment that endows Schmidt coefficients with significance.

Purely quantum ingredients lead to Born’s rule [2–4].
Here we used (o)-(ii) to deduce coefficients of composite
event states (total counts m) from the numbers of elemen-
tary events (detections of ‘‘0’’ and ‘‘1’’). To derive Born’s
rule from no-collapse quantum postulates we have em-
ployed two ideas: Symmetries of entanglement establish
equiprobability. Envariance was key to our approach. The
second ingredient—illustrated by Eqs. (8a) and (8b)
above—is the consistency of amplitude and probability
assignments in composite quantum systems.

Envariance is an objective symmetry of entangled states.
Tensor structure of quantum states allows for a very differ-
ent origin of probabilities of a single event than subjective
ignorance [1], the sole possibility in classical settings: A
perfectly entangled state of the whole can be used to prove
rigorously that distinguishable local states are envariantly
swappable, assuring equal probabilities of orthogonal

outcomes of local measurements. Envariance justifies this
objective ignorance.
Probabilities in our quantum Universe reflect symme-

tries of composite systems and are mandated by quantum
indeterminacy. Envariance also relies on locality of quan-
tum dynamics (i.e., the fact that a unitary operation here
cannot change a state there) and on the basic fact that a
state is all that quantum theory offers as a means of
predicting measurement outcomes: The same states imply
the same predictions. It would be extremely interesting to
test envariance and fine graining in experiments. It is a very
basic and fundamentally quantum symmetry.
Envariant derivation of pk ¼ jc kj2 has been by now

discussed by others [9,19]. The converse of Born’s rule
established here is a crucial link, clarifying the relation
between quantum states, frequencies, and probabilities.
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