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We calculate the energy and wave functions of two particles confined to two spatial dimensions

interacting via arbitrary anisotropic potentials with negative or zero net volume. The general rigorous

analytic expressions are given in the weak coupling limit where universality or model independence are

approached. The monopole part of anisotropic potentials is crucial in the universal limit. We illustrate the

universality with a system of two arbitrarily polarized cold dipolar molecules in a bilayer. We discuss the

transition to universality as a function of polarization and binding energy and compare analytic and

numerical results obtained by the stochastic variational method. The universal limit is essentially reached

for experimentally accessible strengths.
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Introduction.—The existence of bound quantum states in
a potential is a problem that appears in many scientific
disciplines. While in three dimensions it is known that
sufficiently shallow potentials will not bind, for one- and
two-dimensional nonpositive potentials early arguments by
Landau and Lifshitz [1] demonstrated that at least one
bound state is always present for arbitrarily small potential
strength. Only much later was this generalized to potentials
of negative or zero spatial volume by Simon [2]. Such
bound states and their structures not only are of formal
interest but serve a great number of applications in several
areas including exotic atoms [3], excitons in carbon nano-
tubes [4] or semiconducting microcavities [5] and organic
interfaces [6], pairing in two-dimensional Fermi gases [7],
localization of adatoms on surfaces [8] or through nano-
structuring [9], and in population genetics [10].

In this Letter, we introduce a general formalism to
calculate the leading, as well as higher, order terms for
arbitrary anisotropic weak potentials. This opens the door
for many new applications since physical systems usually
have anisotropic features that make models assuming
cylindrical symmetry inaccurate. We test our formulas in
the emerging field of cold polar molecules [11] where
layered geometries have recently been experimentally real-
ized [12]. The long-range dipolar potential can be made
anisotropic by tilting the external aligning field. Novel
superfluid and density-wave instabilities have been pro-
posed in this geometry [13]. However, very little is known
about few-body bound states in the system, particularly in
the experimentally relevant weak coupling limit, where
universal features emerge independent of specific models,
and previous works have considered only the case of
perpendicular polarization [14–16]. We shall compare ana-
lytic and numerical results and investigate the approach
towards the universal limit. We deduce some implications
for three-body [17] as well as for many-body states in two
dimensions (2D).

Formulation.—Consider two particles confined to two
spatial dimensions and interacting via a pair potential
Vð ~rÞ, where ~r is the relative coordinate. Using polar coor-
dinates ~r ¼ ðx; yÞ ¼ ðr cos’; r sin’Þ, we can write the
Schrödinger equation as
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with c the wave function, � the reduced mass, � the
dimensionless strength, �2 ¼ 2�d2E=@2, E the energy, d
the unit of length, and s ¼ r=d the reduced coordinate. The
wave function can be partial-wave expanded:
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where am are the expansion coefficients and the 2D radial
wave functions fmðsÞ satisfy the system of equations
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carry all information about the potential. For cylindrical
potentials Vml / �ml, and the different m values decouple
in Eq. (3).
General derivation.—The regular radial solution to

Eq. (3) at the origin provides the usual boundary condition
for a centrifugal barrier potential; i.e., we choose

lims!0s
�1=2�jmjfmð�; sÞ ¼ 1, where we inserted explicitly

the dependence on the energy parameter � in fm. We
assume that the potential, and consequently also the
right-hand side of Eq. (3), diverge slower than 1=s2 when
s ! 0. The integral form of the equations in (3) is given as
in Ref. [18]:
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where the boundary condition at s ¼ 0 is obeyed through
the solution of the free Schrödinger equation:

Fmð�; sÞ ¼
ffiffiffi
s

p
Jjmjð�sÞð2=�Þjmjjmj!; (6)

where Jm is the Bessel function and where gjmj in Eq. (5) is
the Green’s function given as
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in terms of the Hankel functions HðnÞ
m . For bound states

(where � ¼ ij�j), both the free wave functions in Eq. (6)
and the Green’s function in Eq. (7) diverge at large dis-
tances, but their combination in Eq. (5) must vanish ex-
ponentially. This provides the quantization condition for
the energy. Mathematically, the condition is given asX

cmlal ¼ �am; (8)

cml ¼ �

�
�

2

�jmj i�

2jmj!
Z 1

0

ffiffiffiffi
s0

p
Hð1Þ

jmjð�s0ÞVmlðs0Þflð�; s0Þds0:
(9)

This homogeneous set of linear equations (8) has nontrivial
solutions only if

detðcml þ �mlÞ ¼ 0; (10)

where �ml is Kronecker’s delta.
Solution in the limit of weak binding.—We solve Eq. (5)

with the boundary condition (8) as an expansion in �:
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where a0 is a normalization constant multiplying all am for

m � 0. In the lowest order we find að1Þm fromEq. (8) by using
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Solving Eq. (10) in the leading order in � gives the energy
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where � is the Euler’s constant. Next order corrections can be

determined iteratively byusing the calculatedað1Þm , fð0Þm , andfð1Þ0

as described in Ref. [19]. The asymptotic form of the radial
wave functions for 2D and finite-range anisotropic potentials is
given generally as

fmð�; sÞ !
ffiffiffi
s

p
Hð1Þ

jmjð�sÞ�m0; j�js � 1: (16)

There is always a bound state for very weak potentials even for
zero net volume

R
rVdrd’ � 0, and the threshold behavior of

the energy is given by Eq. (14). For cylindrical potentials, only
the first term inEq. (15) contributes asV0m / �0m, but even the
leading order is still in general complicated.
Dipole results.—Our first application is the system of

two polarized molecules of reduced mass � ¼ M=2 con-
fined to two parallel planes separated by a distance d. The
corresponding dipole-dipole potential V projected to this
two-dimensional geometry is

Vðr; ’Þ ¼ D2 r
2 þ d2 � 3ðr cos’ cos�þ d sin�Þ2

ðr2 þ d2Þ5=2 ; (17)

where D is the dipole moment and � is the polarization
angle measured from the plane. This potential is reflection
invariant with zero net volume for any polarization. It has
monopole, dipole, and quadrupole terms only. The strength
is now � ! U � MD2=ðd@2Þ, and the nonzero matrix
elements are Vm;m, Vm;m�1, and Vm;m�2. Contributions to

second order in U on the right-hand side of Eq. (14) are
included by using m ¼ 0;�1;�2 since higher partial
waves contribute to the wave function only through at least
third order in U. We here systematically restrict ourselves
to first order and arrive at the energy expression

E ¼ � 4@2
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�
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�
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where the coefficients A0, A1, and B1 are defined by
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Here a is the scattering length which is a function of the
strength and the polarization angle [20]. The energy very
close to threshold is exponential in U2, as seen in Eq. (14),
and determined by the polarization angle through A0. The
first order terms (A1 and B1) in U exhibit the difference in
approach to threshold for the different signs of the strength
U. The second order terms (A2 and B2) are necessary to get
the correct U-independent preexponential factor in the
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energy. These higher order terms are sums of a large
number of contributions expressed as definite integrals.
The energy for � ¼ �=2 has been considered in recent
studies [14–16]. While our result is in agreement with
Ref. [16] to second order, the approximation in Ref. [15]
deviates from our results in Eq. (18) in first order through
the A1 term. We give more details on the generalization to
arbitrary polarization directions in Ref. [19].

Properties of weakly bound states.—The energy ap-
proaches zero extremely fast with vanishing strength,
where the wave function depends only on binding energy
through the modified Bessel function K0ðj�jsÞ. The rate of
convergence towards these universal characteristics is less
clear. We therefore designed a numerical method to inves-
tigate these structures; see [19] for more details.

The reduced energy j�2j is about 10�3–10�6 when
U ’ 1, and the numerical results in Fig. 1 are not easily
obtained due to the exponential square dependence on U.
We approach numerically the analytic straight line for
small U and find a very satisfying agreement for all �.
We note that the omitted second order correction terms in

Eq. (18) quickly (U ’ 0:5) become significant in order to
reproduce the parabolic behavior found numerically.
The binding energy is seen from Fig. 1 to increase or

decrease with increasing � for negative or positive U,
respectively. This exponential variation with �, determined
by 2=A0, is shown in Fig. 2 in the limit U ! 0. The
approach toU ¼ 0 also varies strongly with � as illustrated
in Fig. 2 by the slope which even changes sign at � � 0:57.
The structure of the wave function is revealed through

the radial components fm in Eq. (2). In the universal weak
binding limit U ! 0, the m ¼ 0 solution K0 is approached
for all anisotropic potentials. This feature of universality is
reached by smearing out the wave function over an ever
increasing part of space. Outside of the potential, there
emerges a very small and slowly varying wave function,
whereas the contours of the potential are seen at smaller
distances. This variation is found even for very small U,
since the behavior near r ¼ 0 is essential to provide
binding.
The convergence of the wave function towards K0 im-

plies that the mean square radius in the limit is inversely
proportional to the energy: hr2i ¼ 2@2=ð3MjEjÞ, as shown
in Ref. [20] and illustrated in Fig. 3. The limit is ap-
proached from above or below depending on the potential.
A large barrier (as for U > 0, � ¼ �=2) confines the wave
function to small distances even when the energy is rela-
tively close to the threshold. However, eventually the wave
function leaks out and the limit is approached from below.
ForU < 0, � � �=2, the barrier is absent and the approach
for E ! 0 is from above. Approach to the universal limit
for E ! 0 proves that onlym ¼ 0waves remain in analogy
to halo nuclei in three dimensions. For much stronger
binding Ehr2i increases as E becomes large, whereas hr2i
is confined by the radius of the attractive potential.

FIG. 1 (color online). The function FðUÞ �
�U2 ln½jEjMd2=ð2@2Þ� for different polarization angles �. The
dashed curves are calculated numerically, and the solid lines are
from Eq. (18).

FIG. 2 (color online). The value (dashed line) and the deriva-
tive (solid line) with respect to U of the function FðUÞ ¼
�U2 ln½jEjMd2=ð2@2Þ� for U ¼ 0 as functions of the polariza-
tion angle.
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Another feature of universality is that the deviation from
cylindrical symmetry on average disappears when E ! 0
as shown in Fig. 3. The rate of disappearance varies
strongly with the polarization angle. For � ¼ �=2 the
potential itself is already cylindrical, whereas the largest
deformation of potential and wave function occurs for
� ¼ 0. Increasing the angle results in less deformation
for all energies. The elongation is largest along the polar-
ization direction for allU > 0. The deformations forU < 0
are much smaller for comparable energies.

Perspectives.—The two-body system has to be thor-
oughly understood to provide a solid ground for extraction
of properties of the N-body system. We present an alter-
native proof that an arbitrary anisotropic 2D potential with
zero net volume has at least one bound state for infinitesi-
mal potential strength and rigorously derive a general
expression for the energy for very weak potentials where
the system reaches universality with a wave function given
as a modified Bessel function entirely determined by the
binding energy. The analytic result for the energy is
worked out in detail for dipolar molecules, and we illus-
trate the result by accurate numerical computations. High-
order terms in the potential strength are necessary to get
accurate values. We investigate characteristics of univer-
sality, that is, approach to cylindrical symmetry, where the

monopole component dominates and the mean square
radius becomes inversely proportional to the binding en-
ergy. The universal limit is reached when the reduced
strength jUj decreases below unity, which is the regime
of current experiments [12].
These results imply that three particles in 2D without

quantum statistical restrictions would have at least two
bound states for weak couplings with universal features
[20]. In conclusion, reliable predictions of many-body
structures, including regions of various phases, must take
these few-body structures into account as they persist to
arbitrarily small potential strength.
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moment in the x direction and hr2i for different polarization
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