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We study the nematic-smectic phase transition of a thermotropic liquid crystal confined to a spherical

shell. Far from the nematic-smectic phase transition temperature, TNS, we observe a configuration with

four þ1=2 defects, as predicted by theory. Since in this case K1 � K3, the four defects are confined at the

thinnest part of the shell to minimize the energy associated with the defect cores. By contrast, near TNS,

where K3 � K1, bend distortions become prohibited and the defects organize themselves along a great

circle of the sphere, confirming recent theoretical and simulation results. During this structural change, the

defects associate in two pairs that behave independently. In the smectic phase, we observe a new

configuration displaying curvature walls.
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Nematic liquid crystals are typically formed by rodlike
molecules displaying orientational order along an average
direction, n, called the director. When a nematic is con-
fined to a spherical shell, the director field is necessarily
disrupted by the presence of topological defects [1,2].
These systems not only are rich systems to study topologi-
cal problems, but they also provide a promising route for
generating colloids with a valence [3], which is an impor-
tant goal in material science [4]. Different defect structures
have been observed, differing in the number and distribu-
tion of defects [5]. The associated elastic energy is given
by the Franck-Oseen free energy density [6]:

f ¼ 1

2
K1ðr � nÞ2 þ 1

2
K2ðn � r � nÞ2

þ 1

2
K3ðn�r� nÞ2 (1)

where K1 and K3 are the elastic constants associated to
splay and bend distortions. In the limit of a very thin shell,
the director can be regarded as a surface field, and thus, the
twist term associated to K2 can be neglected. When K1 ¼
K3, theory predicts a configuration with four defects ar-
ranged in a tetrahedral fashion [7], as shown in Fig. 1(a).
In this configuration, each defect has a topological charge
s ¼ þ 1

2 , reflecting the� rotation experienced by n along a

path encircling each defect. This is consistent with a
mathematical theorem due to Poincaré and Hopf, which
establishes that the total topological charge for a nematic
sphere is s ¼ þ2 [8]. Interestingly, a new arrangement is
expected when K3 � K1, in which the four s ¼ þ 1

2 de-

fects are placed along a great circle of the sphere [9,10], as
shown in Fig. 1(b). These theoretical expectations, how-
ever, have never been experimentally tested nor has the
effect of the anisotropy in the elastic constants been ex-
perimentally explored.

In this Letter, we study the effect of the anisotropy in
elastic constants K1 and K3 by taking advantage of the
divergence ofK3 near the nematic-smectic phase transition
temperature, TNS [11]. Because of the heterogeneous thick-
ness of the experimental shells, the four s ¼ þ 1

2 defects

characteristic of the nematic phase appear confined in a
small region of the shell and not arranged in a tetrahedral
configuration. By decreasing the temperature toward TNS,
the defects progressively separate to eventually arrange
themselves in a great circle. Below TNS, the translational
symmetry of the nematic phase is broken and a smectic
shell is formed.
To fabricate the liquid crystal shells, we generate double

emulsions in a microfluidic glass capillary device [12]. An
inner aqueous droplet is encapsulated inside an outer liquid
crystal droplet, as schematically shown in Fig. 1(c), which
is in turn dispersed in a continuous aqueous phase. The
average thickness of the shell, h, is given by the difference
between the outer and inner radii, R� a. In our experi-
ments, R is within the ð30–120Þ �m range and h is typi-
cally 2%–3% of R. The inner and outer phases contain
1 wt% of polyvinyl alcohol (PVA,Mw � 20:000 gmol�1),
which stabilizes the double emulsion and imposes planar

FIG. 1. Arrangement of four s ¼ þ 1
2 disclinations on a bidi-

mensional shell (a) in a tetrahedral configuration when K1 � K3,
and (b) along a great circle when K1 � K3. (c) Cross section of
an experimental shell with nonuniform thickness.
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degenerate anchoring to the liquid crystal. The middle
phase is 4-n-octyl-4-cyanobiphenyl (8CB), a liquid crystal
displaying a nematic-smectic phase transition at TNS ¼
33:5 �C. Since the inner aqueous solution is slightly denser
than 8CB, the inner droplet sinks inside the outer one,
making the shell thinner at the bottom and thicker at the
top. In terms of thickness, the experimental shells are, thus,
axisymmetric with respect to the gravity direction, with a
nonuniform thickness � � hð1� cos�Þ that depends on
the zenithal angle � [Fig. 1(c)]. We fabricate and store
the shells at 37 �C, where 8CB is in the nematic phase.
Because of the divergence ofK3 at TNS, an accurate control
of temperature is required to guarantee a quasistatic ap-
proach to the nematic-smectic phase transition; we use a
heating stage with a Lakeshore controller to regulate the
temperature with a precision of 0:01 �C. Additionally, after
changing temperature, we wait for 20 minutes to ensure
that the system is indeed in an equilibrium state.

Figures 2(a)–2(g) show the birefringence texture of a
nematic shell with four defects as the temperature T is
quasistatically decreased toward TNS. The evolution of
the defect positions and director fields is represented in
Figs. 2(h)–2(k). When T � TNS * 1 �C, the four defects
appear confined at the bottom of the shell, as shown in
Fig. 2(a). However, as T approaches TNS, defects 1 and 2
start moving away from each other, while defects 3 and 4
only slightly increase their separation, as shown in
Figs. 2(a)–2(d). It is only after defects 1 and 2 reach the
equatorial plane that defects 3 and 4 significantly move
away from each other to eventually reach the equatorial
plane too, as shown in Figs. 2(e)–2(g). To quantify the
evolution of the defect pairs, we plot the ratio between
the angles subtended by defects 1-2 and 3-4 with respect
to the center of the shell, �12 and �34, as a function of
T � TNS. When T is far from TNS, the defects are almost
located at the vertices of a square and �12 � �34, as shown
in Fig. 3. Decreasing T causes the elongation of the struc-
ture into a rhombus with �12 >�34. This elongation be-
comes maximum at T � TNS ¼ 0:06. Below this, defects
3-4 progressively migrate toward the equatorial plane. As a
result, �12=�34 decreases until eventually the defects are

located in a great circle and �12 � �34 again, as shown
in Fig. 3.
The �12=�34 ratio is closely related to the evolution of

K3 andK1 with T. Close to TNS,K3 diverges with respect to
K1, as shown in the inset of Fig. 3(a), and thus, bend
distortions become energetically prohibited. This forces
n to align along great circles, which are the counterparts
of straight lines on the sphere. In this configuration, sche-
matically represented in Fig. 2(k), the four defects are
necessarily located on a great circle. For shells homoge-
neous in thickness, all great-circle arrangements are de-
generated in energy. However, this degeneracy is broken in
our experimental shells that are heterogeneous in thick-
ness. In this case, the ground state is achieved when the
four defects are located on the equatorial plane, along the
only great circle in which � is uniform.
Far from TNS, when K3 � K1, the four defects are con-

fined at the thinnest part of the shell, as shown in Fig. 2(a).
This results from the nonuniform thickness of these ex-
perimental shells [13]. Because of the nonvanishing thick-
ness of the shells, the þ1=2 defects are disclination lines
that span the shell; to minimize their length, and thus the
energy of the system, they group together at the thinner
part of the shell. The approximate square arrangement
of the defects comes from the approximate isotropy
of the elastic constants at high temperatures. In fact, if
K3=K1 ¼ 1, the elastic energy associated with any director
field is invariant under a �

2 rotation in n, converting bend

distortions into splay distortions and vice versa. Therefore,
the four defects must be located at the vertices of a square
in their equilibrium configuration when K3=K1 ¼ 1.
At intermediate temperatures, when 1<K3=K1 <1,

the energy invariance under a �
2 rotation of n is broken,

and thus, the four defects are necessarily arranged in a
rhombus structure. Since K1 does not change much in the
temperature range studied, the motion of the defects is
mainly controlled by the energy term associated to K3.
To explain why the distance between defects 1-2 becomes
larger than the distance between defects 3-4 when K3=K1

increases, we investigate how increasing K3 affects the
equilibrium texture shown schematically in Fig. 2(h),

FIG. 2 (color online). (a)–(g) Cross-polarized images of an 8CB nematic shell as temperature T decreases toward the nematic-
smectic phase transition temperature TNS. (h)–(k) Evolution of the director field and defect structure during the process, in which
K3=K1 changes between 1<K3=K1 <1. Each panel shows the director field on the lower (left) and upper (right) hemispheres.
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where K3 ’ K1 	 K. This nematic texture has a free en-
ergy that depends onK and the core energies of the defects.
Now, we consider an increase of the bend constant from K
to K3 ¼ K þ�K3, while we keep the position of the
defects fixed. The additional bend energy density, fb,
associated with this increase in the bend constant is mainly
controlled by the radius of curvature of the director lines on
the sphere. For a longitudinal director field such as the one
shown in Fig. 2(k), fb is zero since the integral curves
of the director field are great circles, whereas fb ¼
�K3cot

2�=2R2 for a latitudinal texture [14]. In Fig. 2(h),
the curvature of the director lines is given by the locations
of the defects, which allow us to split the sphere into two
caps. In the lower cap, defined by the position of defects 3
and 4 [shaded region in Fig. 2(h)], the magnitude of fb is

given by fð1Þb � �K3cot
2ð�34=2Þ=2R2, while for the re-

maining part of the sphere, fð2Þb � �K3cot
2ð�12=2Þ=2R2.

The corresponding energies, Fð1Þ
b and Fð2Þ

b , can be respec-

tively obtained as Fð1Þ
b ¼ fð1Þb Vð1Þ and Fð2Þ

b ¼ fð2Þb Vð1Þ,
where Vð1Þ and Vð1Þ are the volumes corresponding to the

regions considered. In spherical coordinates, Vð1Þ ¼
R�34=2
0 2�R2hð1�cos�Þsin�d���R2h�4

34=64 and Vð2Þ �
4�R2h. In the limit of small angular distances, we obtain

Fð1Þ
b � �h�K3�

2
34=32 and Fð2Þ

b � 8�h�K3=�
2
12. The mo-

tion of the defects must be driven by the relaxation of this

additional bent energy. Since Fð1Þ
b � �2

34 and Fð2Þ
b � ��2

12 ,

the system will spontaneously increase �12 as K3 in-
creases, as we observe experimentally.

At TNS, the shell becomes smectic. In the smectic phase,
the molecules assemble in equispaced layers perpendicular
to n. From a geometric point of view, the nematic texture
shown in Fig. 2(k) can be readily converted into a simple
smectic texture that preserves the four s ¼ þ 1

2 defects

[15]. The resulting smectic texture is schematically repre-
sented in Fig. 4(a), n is aligned along great circles and the
bidimensional layers follow latitude lines. Experimentally,
however, the texture develops a series of additional

distinctive patterns in time. Just after the phase transition,
a set of longitudinal lines form on the thicker part of the
shell along the direction of the former director field, as
shown in Fig. 4(b). These lines connect defects 1 and 2 and
divide the shell into several crescent domains; one of those
domains is highlighted in Fig. 4(b). As the sample is
rotated between cross polarizers, the extinction angle pe-
riodically changes from �13� to þ13� from one crescent
domain to the next one, as shown in the inset of Fig. 4(b).
Since n tilts in opposite symmetric directions in adjacent
domains, the longitudinal lines can be identified as curva-
ture walls [16]. We note that the resultant zigzag modula-
tion of the smectic layers reminds us of the patterns
observed after a Helfrich Hurault instability, as schemati-
cally indicated in Fig. 4(c).
After formation of these curvature walls, we observe that

a secondary set of curvature walls form, but these have a
much smaller angular distortion,� 1�, than the first. They
extend across each domain perpendicularly to the tilted
director field and give rise to a dark or light striped pattern

FIG. 4 (color online). (a) Longitudinal texture in a bidimen-
sional smectic shell. The schematic shows the director field
(horizontal discontinuous lines) and smectic layers (vertical
continuous lines) on the upper hemisphere. (b) Birefringence
texture observed in experimental smectic shells, where curvature
walls divide each hemisphere in crescent domains. The inset in
(b) shows that n is tilted in opposite directions in adjacent
domains. (c) Director field corresponding to the texture shown
in (b), where the walls provoke a zigzag modulation of the
smectic layers. (e) Secondary curvature walls provoking a sec-
ondary optical modulation inside crescent domains. (d) Primary
curvature walls at the thinner part of the shell. (f) Local three-
dimensional smectic texture resulting from the bidimensional
one shown in (a). (g) Possible three-dimensional texture in which
the smectic layers twist through the shell thickness. (h) In this
configuration, the effective layer thickness d0 increases at the
outer sphere compensating the effect of the different curvatures
of the inner and outer spheres. (i) This texture implies a large tilt
angle c with respect to the outer sphere normal.

FIG. 3 (color online). (a) Ratio between the angular distances
�12 (between defects 1-2) and �34 (between defects 3-4) as a
function of T � TNS. The inset shows the variation of K3 and K1

versus T � TNS [11]. (b) Geometric definition of �34.
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inside the domains, as shown in Fig. 4(d). The transition
ends with the formation of primary curvature walls at the
lower hemisphere, as shown in 4(e).

The description provided up to this point implicitly
considers that n is uniform through the shell thickness,
which is equivalent to a concentric stacking of the bidi-
mensional structure of Fig. 4(c). Within this picture, the
curvature walls would stem from the significant splay
distortions in Fig. 4(a), which are released via the dilation
of the layers at the walls [6]. Alternatively, the walls could
result from the nonzero thickness of our experimental
shells, as explained below.

In a thick shell, where the inner and outer spheres have
significantly different radii, a strict planar anchoring can be
satisfied on the inner sphere but not on the outer one; this
results from the fact that having strong planar anchoring on
a curved surface is only compatible with a bulk smectic
texture without defects or layer dilations if the smectic
layers grow outwardly from the convex side of the surface
[15]. As a result, the smectic layers filling the shell are
necessarily tilted at the outer surface violating the pre-
ferred planar anchoring and entailing an anchoring energy
cost. To illustrate this, we construct a local bulk smectic
texture from a surface texture with planar anchoring in
Fig. 4(f); the result is a tilt angle, c , at the outer surface.
For typical R ¼ 119 �m and h ¼ 4 �m, we obtain a
typical tilt angle c ¼ arccosða=RÞ � 15�.

It is tempting to think that this supplementary anchoring
energy can be decreased if the smectic layer is progres-
sively twisted from the inner sphere to the outer sphere in
the way shown in Fig. 4(g). The twist angle is � ¼ 13� at
the outer sphere and � ¼ 0 at the inner sphere. Note that
this twist implies a slight dilation of the layers via curva-
ture walls. The zigzag of the smectic layers at the outer
sphere implies that the layers are longer at the outer sphere
than at the inner one; this corresponds to a larger effective
layer separation, d0 ¼ d= cos�, where d is the spontaneous
thickness of the layer [see Fig. 4(h)]. The number of
smectic layers on both surfaces is the same when d0=d ¼
R=a or equivalently when cos� ¼ a=R. For typical values
of R and a, we obtain a twist angle at the outer surface of
� ¼ 15�, consistent with our experimental observations.
Such an arrangement, however, also induces a tilt in the
layers at the outer surface. Accommodating � ¼ 0 at the
inner surface and � ¼ 13� at the outer surface without
layer dilation entails tilting the smectic layer by an angle
c , with maximal value given by tanc ¼ h=ðp tan�Þ,
where p is the width of the corresponding crescent domain
[see Fig. 4(i)]. Using the experimental values p � 15 �m,
� � 13�, and h � 4 �m), we obtain c ¼ 45�, implying
there is also an important penalty in anchoring energy in
the case of the considered twisted structure. Detailed

energy calculations are required in order to elucidate the
ultimate origin of the observed curvature walls.
Nematic shells undergo significant configurational

changes as K3=K1 is varied. When K3=K1 � 1, the four
s ¼ þ 1

2 defects appear confined in the thinnest part of the

shell, approximately located at the vertices of a square. By
contrast, whenK3=K1 � 1, the four defects relocate on the
equatorial plane, confirming recent theoretical and simu-
lation expectations [9,10]. The transition between these
two limiting configurations proceeds continuously through
a series of equilibrium states in which the defects typically
arrange at the vertices of a rhombus. The ratio between the
two diagonals depends on the value of K3=K1. This offers
new possibilities for controlling the position of defects, and
eventually, if these are functionalized, the directionality of
the interactions between shells. New types of defects, not
observed in shells before, appear when the nematic order is
replaced by smectic order. At this point, we observe the
formation of primary and secondary curvature walls,
whose origins we have discussed by considering two pos-
sible scenarios. Our results open the way to rigorous theo-
retical calculations and exemplify the richness of behaviors
that can be obtained when the elasticity of the material or
the degree of order in the shell is changed.
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