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The recent observation [S. P. Mathew et al., J. Phys. Conf. Ser. 200, 072047 (2010)] of the anomalous

softening of spin-wave modes at low temperatures in nanocrystalline gadolinium is interpreted as a

Bose-Einstein condensation (BEC) of magnons. A self-consistent calculation, based on the BEC picture,

is shown to closely reproduce the observed temperature variations of magnetization and specific heat at

constant magnetic fields.
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Bose-Einstein condensation (BEC) is a macroscopic
quantum phenomenon in which, below a certain (ultralow)
temperature, a macroscopic number of bosons spontane-
ously condense into a single lowest-energy quantum state
and the spontaneous quantum coherence of BE condensate,
so formed, persists over macroscopic length and time
scales. A long-standing theoretical possibility that a spin
system, undergoing a quantum phase transition at a critical
magnetic field,Hc, where long-range magnetic order either
appears or disappears, can be mapped onto a system of
weakly interacting bosons and the long-range magnetic
order near the quantum critical point can be modeled as
BEC [1–3] has been explored extensively in the recent
years. Accordingly, in spin-dimer compounds BaCuSi2O6,
Sr3Cr2O8, Ba3Cr2O8, ACuCl3 (A ¼ K;Tl;NH4), Pb2V3O9

[4–11], quasi-two-dimensional spin-1=2 antiferromagnet
Cs2CuCl4 [12], and the spin-gap compound
NiCl2-4SCðNH2Þ2 [13], the phase transition from nonmag-
netic (spin singlet) state to a magnetically ordered (spin
triplet) state, occurring at Hc and resulting in field-induced
magnetic order, has been attributed to the BEC of magnons.
This interpretation has been questioned [14,15] on the basis
that (i) a rearrangement of the ground state of the system by
the application of field generates virtual magnons as op-
posed to the real ones needed for BEC and (ii) in quantum
antiferromagnets, in general, and in the compoundsACuCl3
(A ¼ K;Tl;NH4), in particular, the U(1) rotational symme-
try around the appliedmagnetic field is broken bymagneto-
crystalline anisotropy [16] rather than by field-induced
magnetic order, as required for the BEC of gapless
Goldstone magnon modes or triplons.

In a parallel development, there have been reports [17]
of quasiequilibrium magnons (sustained by microwave
parametric pumping in epitaxial yttrium iron garnet films)
undergoing BEC at room temperature. It has, however,
been argued [18] that the experiments using coherent
magnon pumping demonstrate, at best, an accumulation
of magnon population near the ground state but provide no
direct test of spontaneous coherence, which is essential
to the phenomenon of BEC. The coherence of magnon
condensates witnessed in recent experiments involving

incoherent pumping of magnons [19] restores some con-
fidence in the claim of BEC.
In this Letter, we follow a completely different approach

to demonstrate BEC of magnons in a new system (nano-
crystalline gadolinium, nc-Gd) at temperatures T � 20 K
in zero external magnetic field. In this approach, the physi-
cal quantities (that characterize the BEC transition) such as
(i) the BEC transition temperature at different magnetic
fields TcðHÞ and (ii) the average occupation number for
the ground state (the BEC order parameter) hn0i and the
chemical potential �, as functions of temperature and
magnetic field, are self-consistently determined from the
magnetization and specific heat data taken on well-
characterized [20,21] high-quality nc-Gd samples with
average grain sizes of d ¼ 12 nm and d ¼ 18 nm.
Previous studies on systems undergoing a magnon BEC
transition yielded TcðHÞ but not hn0ðT;HÞi and �ðT;HÞ.
This work thus marks the first attempt to experimentally
determine all three quantities in any magnon BEC system.
A brief outline of the theoretical formalism used is given

below. Assuming quadratic magnon dispersion at long
wavelengths and measuring the wave vector (momentum)
k from the minimum of the magnon dispersion, the low-
energy effective Hamiltonian for magnons in the presence
of magnetic field H is given by

H ¼ X
k
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2k2
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where ayk and ak are the boson creation and annihilation

operators for magnons of wave vector k, the effective
mass m� � @

2=2D, D is the spin-wave (SW) stiffness,
� ¼ �0 þ g�BH, �0 is the gap introduced in the spin-
wave spectrum by the dipole-dipole interactions and/or
magnetocrystalline anisotropy while g�BH is the
Zeeman contribution to the gap. The second term in
Eq. (1) represents the four-magnon interaction and gives
rise to the ‘‘remormalization’’ of D with temperature in
accordance with the relation [22]
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DðTÞ ¼ Dð0Þ½1�D2T
2 �D5=2T

5=2�; (2)

where Dð0Þ is the spin-wave stiffness at T ¼ 0 K and the

T5=2 (T2) term arises from the direct (indirect) magnon-
magnon interactions (mediated by the conduction-electron
spins). Considering that the Ruderman-Kittel-Kasuya-
Yosida interaction is basically responsible for the
ferromagnetic ground state in nc-Gd, the indirect
magnon-magnon interactions dominate at low tempera-

tures and hence the T5=2 term in Eq. (2) is dropped in
subsequent calculations. The momentum distribution of
magnons in the normal (uncondensed) phase is

�n k � hayk aki ¼
1

e�ð"kþ���Þ � 1
; (3)

with "k � @
2k2=2m�. The magnon density n ¼ N=V has to

be determined self-consistently by

n ¼ X
k

�nk ¼ 1
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with the thermal de Broglie wavelength � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�@2=m�kBT

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�DðTÞ=kBT

p
, zeff ¼ ze���, and the

fugacity z ¼ e�� given by the equation of state for non-
interacting Bose gas
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where V is the volume over which the condensate wave
function retains its phase coherence, hn0i � z=ð1� zÞ is
the average occupation number for the ground state,

g3=2ðzÞ �
P1

l¼1 z
l=l3=2 is the Bose-Einstein function while

the critical temperature Tc at which the thermal de Broglie
wavelength becomes comparable to the average interpar-
ticle separation is

Tc ¼ ð2�@2=kBm�Þ½�ð3=2Þ��2=3ðn2=3Þ: (6)

The standard statistical mechanics treatment yields the
magnetization MðT;HÞ and the magnon contribution to
specific heat per unit volume cmagðT;HÞ, as

MðT;HÞ ¼ Mð0; HÞ � g�Bn (7)

with magnon density n given by Eq. (4), and

cmagðT;HÞ ¼ 3kB
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If � ¼ 0, Eq. (7) reduces to the conventional SW rela-
tion for magnetization,

MðT;HÞ ¼ Mð0; HÞ � g�BZ

�
3

2
; tH
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kBT

4�DðTÞ
�
3=2

; (9)

where the Bose-Einstein integral function Zð32 ; tHÞ ¼P1
n¼1 n

�3=2 expð�ntHÞ with tH ¼ �=kBT. Note that the

above theoretical treatment is quite general in that the
same formalism or its system-specific variant can be used
to describe any magnon BEC system.
Recently, an anomalous softening [21] of magnon

modes at low temperatures [T < T�ðHÞ] for H � 1 kOe,
where an upturn in MðTÞ occurs, was inferred from the
conventional spin-wave analysis of MðTÞ of nc-Gd. By
following a self-consistent approach, detailed below, we
demonstrate that this softening of magnon modes is a
consequence of BEC of magnons. At first, Eq. (5) is solved
in conjunction with Eq. (4), for certain initial values of V
and Tc, to yield fugacity as a function of temperature,
zðTÞ, in a given temperature range. zðTÞ, so obtained, is
inserted into Eq. (7) or (8), andMðT;HÞ or cmagðT;HÞ for a
fixed H is calculated using the value �0 ¼ 0:155ð3Þ meV,
previously reported [23] for single-crystal Gd, and trial
values of Dð0Þ and D2 in Eq. (2). The calculated
fðT;HÞcal is compared with the observed fðT;HÞobs (where
f � M or the total specific heatCH, which besides cmag has

additive electronic and phonon contributions) over the
chosen temperature range and this iterative process is
repeated for a different set of values for V, Tc [and hence
zðTÞ],Dð0Þ, andD2 until the agreement between fðT;HÞcal
and fðT;HÞobs in that temperature range is optimized. The
same self-consistent procedure is followed in each tem-
perature range as the temperature range is widened by
including higher temperature data in the analysis. At a
given field, MðT;HÞ and cmagðT;HÞ data yield identical

values (within the uncertainty limits) for the parameters V,
Tc, Dð0Þ, and D2. Figures 1 and 2 demonstrate that the
BEC picture, Eqs. (7) and (8) (continuous curves), de-
scribes MHðTÞ and cmagðT;HÞ [and hence CHðTÞ] quite

well over a temperature range which widens with H. By
contrast, the conventional spin-wave theory, Eq. (9), cor-
responding to the� ¼ 0 case, describes fðT;HÞobs, at best,
in an extremely narrow range as T ! 0 (inset in Fig. 1).

FIG. 1 (color online). Comparison between the observed (sym-
bols) and theoretical [continuous curves, yielded by Eqs. (7), (4),
and (5)] temperature variations of magnetization at fixed fields in
the range 2.2–90 kOe in nanocrystalline Gd with an average
grain size of 12 nm. The inset illustrates that, unlike the BEC
formalism, the conventional spin-wave theory fails to describe
MðTÞ over an extended temperature range.
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cmagðT;HÞ, shown for a few representative fields in the

bottom inset of Fig. 2, exhibits the slope change at Tc that
is generic to BEC. The other notable feature is the increase
in, and progressive smearing of, Tc with H.

The volume V over which the condensate wave
function retains its phase coherence shrinks by nearly
14 (6) orders of magnitude from its value 0:0075ð5Þ cm3

[1:1ð6Þ � 10�11 cm3] at H ¼ 0 for d ¼ 12 nm [18 nm]
and approaches the volume of a single grain as fields in
excess of 30 kOe are applied. The effect of magnetic field
is to create a gap in the spin-wave spectrum (in addition to
the intrinsic gap �0), suppress spin waves, and progres-
sively destroy phase coherence. Tc increases with H in

accordance with the relation TcðHÞ¼TcðH¼0ÞþaH1=�,
with the exponent � ¼ 3=2 (Fig. 3) that is characteristic
[2,8,24] of BEC, up to H ¼ 20 kOe (30 kOe) for
d ¼ 12 nm (18 nm).

The variation of fugacity with temperature, zðTÞ, that
optimizes agreement between fðT;HÞcal and fðT;HÞobs at
different but fixed fields permits an accurate determination
of the average occupation number for the ground
state hn0i¼ z=ð1�zÞ and the chemical potential,
� ¼ kBT lnz, as functions of temperature and field.
hn0ðT ¼ 1:8 K; H ¼ 0Þi ¼ 2:4ð12Þ � 1015 [3:3ð14Þ�106]
for d ¼ 12 nm (18 nm). This result indicates that, in the
limit H ! 0, a sizable fraction of the magnons [magnon
density as high as hn0ðT ¼ 1:8 K; H ! 0Þi=VðH ! 0Þ �

3� 1017 cm�3] excited at T ¼ 1:8 K spontaneously con-
dense into the ground state in both the samples d ¼ 12 and
18 nm, but the condensate wave function retains its phase
coherence over the entire sample volume only in the case
of d ¼ 12 nm. Incidentally, the value of intrinsic spin-
wave energy gap [23] �0 ¼ 0:155ð3Þ meV corresponds
to a temperature of T0 ¼ 1:80ð5Þ K so that the long-
wavelength magnons with a density 	1017–1018 cm�3

can be easily excited at T � 1:8 K. However, regardless
of the values of hn0ðT ¼ 1:8 K; HÞi and VðHÞ at a given H
(includingH ¼ 0) for the samples with d ¼ 12 and 18 nm,
the ratio hn0ðT ¼ 1:8 K; HÞi=VðHÞ is the same (within
the uncertainty limits) for both the samples and increases
with H.
In accordance with the BEC predictions, Eqs. (5) and (6),

at constant H, the condensate fraction hn0ðT;HÞi=hn0ðT ¼
1:8 K; HÞi scales with ½T=TcðHÞ�3=2 over a temperature
range which increases with decreasing H (Fig. 4) while

TcðHÞ / ½hn0ðT ¼ 1:8 K; HÞi=VðHÞ�2=3 (inset of Fig. 4).
As the coherence volume V shrinks with increasing H,
the sharp kink in zðTÞ or �ðTÞ at T ¼ Tc gets smeared
out progressively so much so that z (or equivalently, �)
falls short of the value unity (zero) even at T ¼ 0 (bottom
inset of Fig. 3) with the result that the smearing of the
transition at Tc occurs and the ratio hn0ðT;HÞi=hn0ðT ¼
1:8 K; HÞi acquires higher and higher values even at tem-
peratures in the vicinity of Tc (Fig. 4). It is clear that at
temperatures well below Tc, � ! 0 only in the limit
H ! 0. As expected for a true thermodynamic BEC phase
transition, concomitant with zero chemical potential (de-
noted by curve 1 in the inset of Fig. 3), the condensate
fraction hn0ðT;H ¼ 0Þi=hn0ðT ¼ 1:8 K; H ¼ 0Þi, deduced
from cmagðT;H ¼ 0Þ, decreases linearly with the reduced

temperature ½T=TcðH ¼ 0Þ�3=2 (solid line in Fig. 4) so as to
drop to zero at T ¼ TcðH ¼ 0Þ and remains zero for T �
TcðH ¼ 0Þ, where �=kBT exhibits an abrupt linear fall to
large negative values with increasing temperature.

FIG. 2 (color online). The total specific heat CHðTÞ at a few
representative fields for d ¼ 12 nm. Note that the CH¼20 kOeðTÞ
and CH¼0ðTÞ data are shifted up by 2.5 and 5:0 J=molK,
respectively, with respect to that taken at H ¼ 40 kOe. The
continuous theoretical curves are obtained by adding the
(Sommerfeld) electronic, (Debye) lattice, and (BEC) magnon
Cmag contributions to CHðTÞ. The bottom inset shows CmagðTÞ,
the slope change at Tc, predicted by the BEC theory, and the
increase in, and progressive smearing of, Tc with H. The top
inset displays the magnetic entropy change ��Smag for a few

representative�H values (open symbols), obtained fromMHðTÞ,
plotted against ½T=TcðH ¼ 0Þ�3=2 for d ¼ 12 nm. The straight
lines serve to highlight the characteristic BEC T3=2 variation of
entropy for T 
 Tc. ��Smag at �H ¼ 20 kOe (solid circles),

calculated from CHðTÞ, agrees quite well with that calculated
from MHðTÞ (open squares).

FIG. 3 (color online). The BEC transition temperature Tc

obtained from MHðTÞ and cmagðT;HÞ plotted against H2=3 for

d ¼ 12 and 18 nm. The bottom inset depicts the temperature
variations of the normalized chemical potential �=kBT at vari-
ous fixed field values for d ¼ 12 nm.
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As a consistency check, the field-induced change in
magnetic entropy, �Smag, is determined fromMHðTÞ using
the Maxwell thermodynamic relation ð@Smag=@HÞT ¼
ð@M=@TÞH. The top inset of Fig. 2 displays the plots of
ð�SmagÞT ¼ ½SmagðHÞ � SmagðH ¼ 0Þ�T ¼ R

H
0 ð@M=@TÞH

ðdHÞT against ½T=TcðH ¼ 0Þ�3=2 at a few fixed fields, with
TcðH ¼ 0Þ ¼ 16:5ð5Þ K [20.5(5) K] for d ¼ 12 nm
[18 nm] obtained from cmagðT;H ¼ 0Þ. In striking agree-

ment with the characteristic BEC behavior of entropy,

�SmagðTÞ decreases with temperature as T3=2 in the limit

T ! 0 so as to approach zero particularly when H ¼ 0.
Since the magnon condensate fraction (with zero entropy)
reduces with increasing field (due to the destruction
of phase coherence by H), the value of �SmagðTÞ at

T ¼ 0 increases with H. Furthermore, ��Smag ¼ SðH ¼
20 kOeÞ � SðH ¼ 0Þ, calculated from the specific heat
CHðTÞ data recorded atH ¼ 0 andH ¼ 20 kOe, conforms
well with that determined fromMðT;H ¼ 20 kOeÞ. Such a
perfect agreement between the two sets of data is found at
other fields as well.

Next, nc-Gd is compared with the systems that are
known to undergo BEC of magnons. In spin-gap or spin-
dimer compounds (yttrium iron garnet films), the applied
magnetic field (microwave parametric pumping) tunes the
system to the quantum critical point (critical quasiequili-
brium magnon density) so as to induce BEC. By contrast,
as is the case for an ideal BEC, the temperature drives the
BEC transition in nc-Gd. The applied field needed to
induce BEC in quantum antiferromagnets is often quite
large, and hence for a direct comparison with the theory,
the bulk properties cannot be measured in the BEC regime
with the same ease as in nc-Gd, where a true BEC phase
transition occurs in zero field (Fig. 4). This makes nc-Gd a
unique system in which the BEC picture can be put to a
stringent test. Moreover, as in nc-Gd, the deviations from
the conventional spin-wave behavior of magnetization at
low temperatures, observed previously in elongated Fe
nanoparticles [25], ferrite nanoparticles [26], and Co-Pt

nanopillars [27], could well be the manifestation of the
BEC of magnons. Thus, nanocrystalline or nanostructured
magnets may form an entirely new class of magnon BEC
systems.
To summarize, our observations, such as (i) the critical

temperature Tc 	H2=3, (ii) at H ¼ 0, the condensate

fraction scales with ½T=Tc�3=2 right up to T ¼ Tc

such that it possesses the value zero at T � Tc,

(iii) TcðHÞ / ðfield-dependent condensate densityÞ2=3,
(iv)� ! 0 asH ! 0 for T � Tc and abruptly falls to large
negative values as the temperature exceeds Tc, and (v) the
magnetic field-induced change in the magnon entropy

follows the T3=2 power law at low temperatures and goes
through a peak at TcðHÞ, amply corroborate the BEC of
magnons at low temperatures in nc-Gd.
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