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Spin waves in insulating magnets are ideal carriers for spin currents with low energy dissipation. An

electric field can modify the dispersion of spin waves, by directly affecting, via spin-orbit coupling, the

electrons that mediate the interaction between magnetic ions. Our microscopic calculations based on the

superexchange model indicate that this effect of the electric field is sufficiently large to be used to

effectively control spin currents. We apply these findings to the design of a spin-wave interferometric

device, which acts as a logic inverter and can be used as a building block for room-temperature, low-

dissipation logic circuits.
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One of the major challenges of contemporary electronics
is to reduce dissipation as the size of devices shrinks to the
nanometric scale. In this context, spin-wave spintronics,
so-called magnonics, with insulating magnets offers inter-
esting possibilities [1,2]. While in metals and semiconduc-
tors the spin current is carried by mobile conduction
electrons or holes, which inevitably dissipate energy as
they move, in a magnetic insulator, such as Y3Fe5O12

(YIG), the spin current is carried by a collective motion
of magnetic moments—a spin wave—with no charge dis-
placed. The spin current propagating in these insulating
materials is thus totally free of energy dissipation from
Joule heating, and almost free of dissipation from other
sources (e.g., electron-magnon scattering): the coherence
length can be as large as several centimeters [2]. For these
reasons, magnetic insulators have attracted considerable
attention in recent theoretical [3–5] and experimental [2,6]
work. For example, Kajiwara et al. [2] have demonstrated
injection and extraction of spin waves into and out of a YIG
waveguide [7]. Kostylev et al. [8] have designed an ingen-
ious scheme of spin-wave logic, based on the interference
between spin waves traveling along different arms of a
Mach-Zehnder interferometer (a schematic illustration of a
Mach-Zehnder spin-wave interferometer is shown in
Fig. 1).

A crucial element of magnonics [1] is the phase
shifter—a device that changes the phase of propagating
spin waves. Several mechanisms have been proposed in the
past to implement controlled phase shifts on spin waves.
The simplest and most direct is the application of a mag-
netic field, which shifts the dispersion [9], thus changing
the wave vector at constant frequency [8]. More sophisti-
cated mechanisms exploited the Berry phase accumulated
by spin waves that propagate on a noncollinear magnetic
texture [4,10]. In a parallel development, Cao et al. [11]
studied the effect on spin waves of an electric-field-
induced Aharonov-Casher (AC) phase [12]. More recently,
the influence of electric fields on spin waves has been
studied both theoretically [13] and experimentally [14],

and a strong shift of spin-wave dispersion induced by an
electric field has been reported [14].
In this Letter we directly tackle the problem of control-

ling the phase of a spin wave (and hence the spin current)
by means of an electric field. We will show that the
electric-field-induced AC phase has important implications
for spin-wave interferometry, since the effect is much
larger than that initially predicted in Ref. [11]. Our analysis
starts at the microscopic level, with a very simple super-
exchange model [15] for the magnetic interaction between
two neighboring magnetic ions (e.g., Fe3þ in YIG) in a
magnetic insulator. The model is depicted in Fig. 2. There
are no itinerant electrons in an insulator, but the virtual
hopping of electrons between the d orbitals on the mag-
netic ions (Fe3þ) and the p orbitals on the ligand (O2�) is
sufficient to establish an antiferromagnetic interaction of
the Heisenberg type,

HH ¼ JS1 � S2; (1)

which is responsible for the occurrence of magnetic order
in the material. Notice that in this model the physical d and
p orbitals are replaced by doubly degenerate orbitals,
which are eigenstates of the z component of the electron
spin. Spin-orbit (SO) coupling effects are completely ne-
glected up to this point.

FIG. 1 (color online). A Mach-Zehnder spin-wave interfer-
ometer in the presence of radial E field. A weak magnetic field
is applied perpendicular to the ring plane, tilting the equilibrium
magnetization away from the ring but still in the tangential
plane to the ring. �0 denotes the orientation of the equilibrium
magnetization.
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We now augment the usual superexchange model by the
inclusion of a SO interaction of the form

HSO ¼ ��2

@
ðp� eEÞ � �; (2)

where � is a characteristic length scale that controls the
strength of the SO interaction, e is the elementary charge,
and � is the Pauli matrix. For electrons in vacuum � is the
Compton wavelength �c ¼ @

mc , but we will see below that,

in any realistic model of magnetic insulators, the value of �
is orders of magnitude larger (of the order of Å). Although
there are no itinerant electrons carrying a finite average
momentum p, we will show below that the effect of the SO
interaction on the phases of the virtual hopping translates,
at the macroscopic level, into the appearance of a
Dzyaloshinskii-Moriya (DM) interaction [16] between
the magnetic moments of the ions:

HDM ¼ D � ðS1 � S2Þ; (3)

where the vector D is given by

D ¼ �J
ea

ESO

E� ê12; (4)

with a being the distance between the magnetic ions, ê12
the unit vector in the direction connecting the ions, and

ESO � @
2

2m�2 (in vacuum � ¼ �c and ESO ¼ mc2=2,m is the

bare electron mass). As a result of this interaction, the spin
waves—obtained by solving the appropriate ferromagnetic
Hamiltonian for an infinite chain of identical blocks of
magnetic ions (see discussion below)—have their wave

vector shifted by q ¼ D�Ŝ0

Ja ê12, where Ŝ0 is the direction

of the equilibrium magnetization. This, in principle, gives
us a way to control the phase of the spin wave by an electric
field. In practice, the feasibility of the proposal depends
critically on the strength of the spin-orbit coupling �2. If
we used the value of � in vacuum (as was done in
Ref. [11]), the effect would be extremely weak, and proba-
bly unobservable with realistic electric fields.

The reason why � turns out to be much larger than �c is
that the physical d orbitals in the magnetic insulator (as
opposed to the model orbitals we have dealt with so far)
have strong intrinsic spin-orbit coupling L � S built in.
For example, in the model adopted by Katsura et al. [17],
the doubly degenerate orbitals of the superexchange
model are actually spin-orbit-entangled states of the form

jai ¼ ðjdxy "i þ jdyz #i þ ijdzx #iÞ=
ffiffiffi
3

p
and jbi¼ ðjdxy #i�

jdyz "iþ ijdzx "iÞ=
ffiffiffi
3

p
. In order to determine the value of �

(or, better, ESO) in our model, we observe that the DM
interaction Eqs. (3) and (4), and indeed the spin-orbit
interaction (2) itself, can be viewed as the interaction
of the electric field with an effective electric dipole,
i.e., HDM ¼ E � P, where the electric dipole is

P ¼ �J
ea

ESO

e12 � ðS1 � S2Þ: (5)

The effective electric dipole arises from the hybridization
of orbitals centered at different atoms. For example, in the
model of Ref. [17] the exact single-particle eigenstates are
combinations of d orbitals on the magnetic ions and p
orbitals on the oxygen due to the hopping of the electron:
these states carry an electric dipole moment P ¼
� 4eJI

9t e12 � ðS1 � S2Þ, where t is the hopping coefficient

and I ¼ 16
27Z

5=2
O Z7=2

M ðZO

2 þ ZM

3 Þ�6aB with aB being the Bohr

radius and ZO (ZM) being the atomic number of O (M).
Comparing this to our Eq. (5) we arrive at an unambiguous
identification of ESO (and hence �) within our model:

ESO ¼ 9ta

4I
: (6)

Taking YIG as an example [18,19], with t ¼ 0:8 eV and

I ¼ 0:61a, we get ESO ¼ 3:0 eV and � ¼ 1:13 �A. This is
indeed several orders of magnitude larger than �c and
opens the way to practical schemes of electric control of
the phase of spin waves.
In the remainder of this Letter we supply more theoreti-

cal detail on the calculations supporting the above analysis,
then work out the dispersion of spin waves in the presence
of the electric field, and apply the results of these calcu-
lations to the design of a spin-wave interferometer (see
Fig. 1), to be used as building blocks of spin-wave logic
circuits.
Microscopic analysis.—The insulator we are interested

in is YIG, whose magnetic order mainly arises from the
superexchange interaction between Fe3þ in octahedral (a)
sites and tetrahedral (d) sites. The fact that the numbers of
(a) and (d) sites per unit cell are different makes YIG a
ferrimagnet. However, the long wavelength spin waves,
whose energy is less than about 40 K, can be understood
with an effective ferromagnetic exchange coupling be-
tween ‘‘block spins’’ Si, one per unit cell [19]. The ques-
tion is how an electric field affects this block ferromagnet.
We start from the superexchange model shown in Fig. 2,
which can be described by the following Hamiltonian:

Hsuper ¼ H0 þHt þHU;

H0 ¼ �0
X
�

cy0�c0� þ �1
X2
i¼1

X
�

cyi�ci�;

Ht ¼ �t
X
�

ðcy1�c0� þ cy2�c0� þ H:c:Þ;

HU ¼ U
X2
i¼1

X
�

cyi�ci�c
y
i ��ci ��;

(7)

FIG. 2 (color online). Superexchange model: two half filled
magnetic ions connected by an oxygen ligand.
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where c (cy) is the creation (annihilation) operator of
ligand electrons, which can hop forth and back only be-
tween oxygen ligand and the metal ions, and �1 and �0 are
the orbital energies of a metal ion and the oxygen ligand,
respectively. The large repulsion energy U (� 8 eV)
between two electrons on the same metal ion allows for a
maximum occupancy of two electrons per ion (the repul-
sion between the electrons in the oxygen ligand is negli-
gible in comparison).

The fact that t (’ 0:8 eV) is much smaller that U allows
us to use perturbation theory. Keeping up to the fourth
order of t yields the effective interaction between the spins
on the magnetic ions:

Heff ’
�
4t4

V2U
þ 4t4

V3

��
1

2
ðSþ1 S�2 þ H:c:Þ þ Sz1S

z
2

�
; (8)

where V ¼ �1 � �0 þU corresponds to the energy differ-
ence between the p and jPi orbitals in the Letter by

Katsura et al. [17]. Setting J ¼ 4t4

V2U
þ 4t4

V3 � 8t4

V3 and drop-

ping the constant term, we obtain the Heisenberg interac-
tion Eq. (1). A positive J implies that the interaction
between neighboring magnetic ions is antiferromagnetic.
However, this antiferromagnetic interaction gives rise to a
ferromagnetic interaction between block spins in YIG, due
to the unequal magnitudes of the antiparallel magnetic
moments in each block.

Let us now include the spin-orbit interaction HSO from
Eq. (2). It is easy to see that the inclusion of this interaction
is equivalent to the inclusion of a spin-dependent vector

potential A ¼ m�2

@
E� �, which in turn modifies the hop-

ping term Ht by a spin-dependent phase factor, that is

Ht ¼ �t
X
�

ðcy1�c0�e�i�� þ cy2�c0�e
i�� þ H:c:Þ; (9)

where � ¼ eaE
4ESO

, provided that the external electric field,

the motion of the electron, and the electron spin (�) are
perpendicular to each other. Notice that the phase � is
proportional to the distance between neighboring sites
and independent of the direction of the localized moments:
one can therefore switch to the block spins’’ description by
simply reinterpreting a as the distance between neighbor-
ing blocks. The resulting spin Hamiltonian takes the form

H ¼ �J0
X
hi;ji

SziS
z
j þ

1

2
ðei2�ijSþi S�j þ e�i2�ijS�i Sþj Þ

’ �J0
X
hi;ji

fðSi � SjÞ þ sin2�ijðSi � SjÞzg; (10)

where �ij � 2�ði� jÞ,�J0 is the effective exchange cou-
pling for the spin blocks, and z is in the direction perpen-
dicular to E and eij. In addition to the normal Heisenberg

term we now also have a DM term [16], whose strength is
linear in E. An electric-field-induced anisotropy is also
present, but is an effect of order E2 and has therefore
been neglected for weak electric field.

In spite of the presence of the noncollinear DM term, the
ferromagnetic configuration is still the ground state of (13).
To show this, we make Si ¼ S0 þ �Si, where �Si is small
deviation perpendicular to S0. Then the variation of the
DM term up to the second order of �Si is

�HDM � X
hi;ji

Dij � ð�Si � S0 þ �Si � �SjÞ; (11)

where Dij is defined by Eq. (4) with e12 replaced by eij.

Since eij ¼ �eji, we see that
P

jDij ¼ 0, which means

�HDM ¼ 0 up to the first order of �Si. Hence, the ground
state is still ferromagnetic. However, the DM term will
definitely modify the spin-wave frequency, which involves
a correction to the ground state energy at the second order
in �Si. Further, we can clearly see that it is only the
component of the D parallel to �Si � �Sj (i.e., to the

direction of the equilibrium magnetization) that plays a
role in the modification.
Spin-wave dispersion.—We now proceed to solve the

dispersion of the spin waves in the presence of the DM
interaction derived above. We consider the ring geometry
illustrated in Fig. 1: the electric field perpendicular to the
ring produces a DM vector D directed along the z axis.
This will affect the dispersion of spin waves if and only if
the equilibrium magnetization has a nonvanishing compo-
nent along the z axis. In a flat ring, such as the one shown in
Fig. 1, the shape anisotropy [20]—KðS � êÞ2=S2, where ê is
the unit vector along the ring—outweighs other forms of
anisotropy, causing the equilibrium magnetization to lie
along the ring, in which case the electric field has no
influence. As a result, a magnetic field along the z axis
(Zeeman coupling g�BBSz) is necessary for us to observe
the impact of the DM term on spin waves propagating in
the ring. Now, however, the orientation of the equilibrium
magnetization is no longer constant in absolute space (even
though it is constant relative to the ring). This causes an
additional geometric phase (�g ¼ a

R ) to appear, as shown

in Ref. [4], where R is the radius of the ring. Putting
everything together, i.e., DM interaction, geometric phase,
Zeeman coupling, and shape anisotropy, we arrive at the
following equation of motion:

@
@Si

@t
¼ Si �

�
J0ðSiþ1 þ Si�1Þ þ 2

K

S2
Sxi êx � g�BBiêz

�

�DzS
z
i ðSiþ1 � Si�1Þ: (12)

The large magnitude of the block spin of YIG (S ¼ 14:3)
allows us to use the semiclassical spin-wave approach to
get the dispersion relation:

! ¼ J0S
h

fa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ �2Þðk2 þ �2sin2�0Þ

q
þ 2 ��ka cos�0g;

(13)

where �� ¼ 4�� �g, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=J0S2a2

p
, and cos�0 ¼

g�BBS
2K , which is determined by minimizing the total

Hamiltonian in the limit of �2 � 1
R2 .
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As shown in Fig. 3, one can tune the dispersion by
adjusting the electric and the magnetic fields. Just as a
magnetic field shifts the spin-wave dispersion vertically by
increasing or decreasing the frequency at fixed k, the
electric field shifts the dispersion horizontally by increas-
ing or decreasing the wave vector at fixed frequency.

Spin-wave interferometer.—Now we are ready to design
our spin-wave interferometric device. An insulating ring
encircles a metal electrode to which a voltage Vin can be
applied. The radial electric field acting upon the electrons

in the ring is �Vin

R lnðr0=RÞ .
In Fig. 3(b) we plot the transmission of a spin wave sent

through this Mach-Zender interferometer, as a function of
Vin and B. The effect of B is to change the equilibrium
orientation of the magnetization. The white regions in the
figure are regions of constructive interference, separated by
regions of destructive interference. We see that very mod-
est changes of potentials and magnetic fields, of the order
of 1 V and 0.01 T, respectively, switch the response of the
interferometer from high to low. It is then clear how the
device can be used as a logic inverter: the logic input being
the voltage on the central electrode, and the logic output
the intensity of the spin wave, as measured by an inductive
coupler. Advantages of this design are that it would operate
at room temperature and GHz frequencies, with very little
dissipation, and can be made small by using exchange spin
waves—the only type we are really considering here, since
magnetostatic spin waves have much longer wavelengths
and are hardly affected by the AC phase. Once a logic
inverter is available, we can follow Kostylev et al. [8] in
constructing more complicated architectures, which imple-
ment the NAND gate, the NOR gate, and all of classical
logic.

It is worth noting that a traveling spin wave is itself a
source of electric field: E ’ �0v� �M, where v is the
velocity of the spin wave, �M is the amplitude of the
magnetization oscillation, and �0 ¼ 4	� 10�7 N=A2 is

the vacuum permeability. In our device, the resulting
electric field is of the order of 1 V=m, which is negligible
in comparison to the control field E ’ 107 V=m. Even
smaller is the electric field associated with mesoscopic
equilibrium spin currents in the ring (E ’ 10�2 V=m) [3].
In conclusion, we have proposed an energy-efficient

way to control the spin current propagating in an insulating
magnet by means of an electric field. This possibility arises
from the strong coupling that exists between the electric
field and the spins of the electrons that mediate the inter-
action between magnetic ions. The strength of this cou-
pling has been theoretically estimated from microscopic
parameters, such as electron hopping coefficient, distance
between neighboring magnetic sites, etc., as shown in
Eq. (6). Or it could be indirectly determined from mea-
surements of physical effects that are sensitive to it, e.g.,
the spin-wave spin Hall effect proposed by Meier and Loss
[5]. Finally, we have applied our theory to an insulating
magnetic ring inteferometer, which can be used to imple-
ment a voltage-controlled spin-wave-based NOT gate.
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