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We propose a free-energy-based Monte Carlo method to measure the volume of potential-energy basins

in configuration space. Using this approach we can estimate the number of distinct potential-energy

minima, even when this number is much too large to be sampled directly. We validate our approach by

comparing our results with the direct enumeration of distinct jammed states in small packings of

frictionless spheres. We find that the entropy of distinct packings is extensive and that the entropy of

distinct hard-sphere packings must have a maximum as a function of packing fraction.
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When many equal-sized spheres are poured into a con-
tainer, the spheres are unlikely to end up arranged in a
periodic lattice. This observation reflects the fact that S0,
the entropy of distinct disordered packings that are me-
chanically stable, is very large compared to the corre-
sponding entropy of distinct ordered packings. The fact
that S0 is so large has important consequences for the
disordered packings such as granular materials [1–3].

There is a natural connection between hard-sphere pack-
ings and glasses [4], whose potential-energy landscapes
have many minima (inherent structures [5]), corresponding
to mechanically stable states. These minima have been
argued to be relevant for our understanding of the glass
transition [3,6]. The number of such minima has been
calculated from replica theory [3,7,8]. In calculating this
number numerically, however, a protocol must always be
used to generate energy minima. Typical protocols produce
states with probabilities that are not known; for example,
when the entropy of minima is calculated from finite-
temperature simulations [9–12], one must assume that
the temperature is low enough so that the system crosses
no barriers. Similarly, when the entropy is calculated
from algorithms that involve compression or dilation of
the system [13–15], it may depend—even under ideal
conditions—on the algorithm used. As a result, it is diffi-
cult to count the number of distinct mechanically stable
states, with states weighted equally.

In this Letter we report a general computational method
to measure the volume of a basin of attraction associated
with an arbitrary potential-energy minimum. This is the
key to calculating the entropy of distinct minima for soft
spheres because there is a protocol that generates minima
weighted by their basin volumes [4]. In this ‘‘basin’’ pro-
tocol, states in configurational space are selected at random
and each one is quenched to its nearest energy minimum
[4]. By using this protocol and correcting for the weighting

by calculating the basin volume, we can obtain the un-
weighted entropy of distinct mechanically stable states
(packings) for soft spheres. Finally, the analogous entropy
for hard-sphere packings can be obtained from the density
of soft-sphere packings at zero pressure. We find that there
must be a maximum in the entropy of distinct hard-sphere
packings, at least for small systems, in agreement with
earlier results obtained by direct enumeration [15].
To explain our approach, we first define the volume of a

basin for a packing of soft spheres as

vb ¼
Z

d ~RGð ~R; ~R0Þ; (1)

where Gð ~R; ~R0Þ ¼ 1 if, upon energy minimization, any

point ~R in configuration space ends up at ~R0, the position
of the local potential-energy minimum, and 0 otherwise.
The integral is over the whole configuration space. We
view the (hyper)volume associated with a given basin as
a partition function and hence compute its value by a
suitable free-energy calculation method. Here, we will
use the standard ‘‘Einstein’’ method [16] and compute
the basin free energy by comparing it to the free energy

of a system confined near the minimum ~R0 by a harmonic
potential with spring constant k. For arbitrary k, the ca-
nonical partition function of the system is

QðkÞ ¼
Z

d ~RGð ~R; ~R0Þ expð��ku2=2Þ; (2)

where u ¼ j ~R� ~R0j is the distance between ~R and ~R0, and

� � ðkBTÞ�1 with kB the Boltzmann constant. Gð ~R; ~R0Þ in
Eq. (2) can be rewritten as expð��UÞ, where U ¼ 0 when
~R is in the basin, and 1 otherwise. Obviously, vb ¼ Qð0Þ.
Without loss of generality, we choose � ¼ 1.
The free energy of this system is FðkÞ ¼ � lnQðkÞ

and dFðkÞ
dk ¼ hu2=2ik, where h� � �ik denotes a canonical
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ensemble average at the spring constant k. This average
can be sampled in a standard Monte Carlo (MC) simula-
tion. The change in free energy upon switching on a spring
constant km is

FðkmÞ ¼ Fð0Þ þ
Z km

0
hu2=2ikdk; (3)

where km is chosen sufficiently large that the confining
potential has no influence. In that case FðkmÞ is known
analytically and Eq. (3) allows us to compute Fð0Þ and
from that the volume of the basin, as vbð ~R0Þ ¼
exp½�Fð0Þ�. In practice, we choose a maximum km such
that most (in our case >90%) of the associated Gaussian

distribution is within basin ~R0. One then corrects the
Einstein crystal result for the confining effect of the basin:
FðkmÞ ¼ � dN

2 lnð2�=kmÞ � ln f, where d is the dimension

of space, N is the number of particles in the system, and f
is the fraction of the associated Gaussian distribution

within basin ~R0.
Given the basin volume, we can calculate the entropy of

distinct mechanically stable minima. We include in our
analysis only energy minima that are mechanically stable
(jammed). The fraction of the total configuration space Vtot

occupied by basins of jammed states fj is computed [4] by

quenching randomly selected points in configuration space
to the nearest energy minimum and calculating the fraction
that end up in jammed states. The volume of configuration
space at packing fraction � occupied by jammed basins is
Vcð�Þ ¼ fjð�ÞVtot.

As pointed out by Speedy in a slightly different context
[17], the total configuration space can be uniquely decom-
posed into distinct basins, and hence its volume is simply
the sum of the volumes of the constituent basins. Thus,

Vcð�Þ ¼ X�c

i¼1

vb ¼ �c

�
1

�c

X�c

i¼1

vb;i

�
¼ �chvbi: (4)

By sampling the basin volume to obtain hvbi, we can
therefore compute�c, the total number of distinct jammed
states.

Note that ‘‘computing the average basin volume’’ sounds
simpler than it is because the probability to sample a given
basin is proportional to the basin volume itself. We correct
for this bias by dividing by the basin volume. However, if a
substantial fraction of all distinct basins together occupy a
negligible volume of configuration space, they will not be
sampled at all. For this reason, it is imperative to check this
method for small systems for which all distinct basins can
be identified.

To test the method, we consider N disks in a square box
of length L with periodic boundary conditions. Disks
i and j interact via a ‘‘harmonic’’ repulsion Vij ¼ �ð1�
rij=�ijÞ2=2 when the distance between their centers of

mass rij is smaller than the sum of their radii, �ij ¼ ð�i þ
�jÞ=2, and zero otherwise. In order to avoid crystallization,

we use a 50:50 binary mixture of disks. The diameter ratio
of the large disks to the small ones is 1.4. We choose units
where the length of the simulation box is L ¼ 1 and the
characteristic energy of the interaction is � ¼ 1. For this
system, the total volume of configuration space occupied
by distinct basins is

Vtot ¼ LdN

½ðN=2Þ!�2 ; (5)

where ½ðN=2Þ!�2 accounts for disk indistinguishability.
The direct calculation of the integral on the right-hand

side of Eq. (3) is computationally expensive because the
acceptance step of every MC move requires an energy
minimization (to see if the system has left the original
basin). Otherwise, the calculations are exactly as in
Ref. [16]. In what follows, we use Gauss-Lobatto quad-
rature to evaluate Eq. (3), changing variables so that the
integrand varies only weakly over the integration interval
to improve accuracy (see [16]). We verified that the inte-
grand in the Gauss-Lobatto quadrature indeed varies
smoothly with increasing force constant k of the harmonic
spring.
As the potential energy has to be minimized at every

step, the efficiency of the energy minimization routine
becomes important. From any given starting point, the
routine should find the minimum corresponding to a
steepest-descent (SD) search. Only the SD algorithm itself
is guaranteed to do that, but this algorithm is not efficient at
finding the minimum. In what follows, we make use of the
L-BFGS minimization routine [18] as it is much (an order of

magnitude) faster. We find that the L-BFGS, conjugate gra-
dient (CG) and SD algorithms yield very similar results for
basin volumes and volume distributions for N ¼ 8, as
shown in the inset of Fig. 1. However, in general it may
be safer to use SD, in spite of its higher computational cost.
The first step in the computation of a basin volume is to

find a potential-energy minimum. To do this, we generate a
random point in the configuration space of the system
under study (a dN-dimensional hypercube for a system
of N spheres in d spatial dimensions). Starting from this
initial coordinate, the potential energy of the system is

minimized to find the coordinate ~R0 that corresponds to
the (local) potential minimum [4]. Since the probability of
sampling a given minimum is proportional to the volume of
its ‘‘catchment basin,’’ we can deduce the volumes of the
individual basins from the frequency with which they are
sampled, for systems sufficiently small so that all basins
can be sampled in a simulation. Thus, this brute-force
approach can be used to validate the free-energy-based
volume calculation.
We used the two approaches mentioned above to com-

pute the number of distinct catchment basins �c of the
binary disk mixture at a packing fraction � ¼ 0:9 and
system sizes N 2 ½8; 16�. For these small systems, we
can find effectively all distinct states by sampling up to
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Nt ¼ 108 uncorrelated initial configurations [15]. During
the runs, we keep track of nsðntÞ, the number of distinct
basins sampled after nt randomly chosen initial configura-
tions. As shown in Ref. [15], ns saturates for large nt,
suggesting that we have found all distinct basins or, more
precisely, the combined volume of all basins not sampled is
less than Oðn�1

t Þ. The fractional volume occupied by an
individual basin i is then given by PdðiÞ � nðiÞ=Nt, where
nðiÞ denotes the number of times that we have sampled the
same basin i after Nt trials.

For each distinct basin, we also calculate the basin
volume vbðiÞ using the free-energy method described
above. The fractional volume occupied by distinct basin i
is given by vbðiÞ=Vtot, where Vtot is given by Eq. (5).

Figure 1 shows the correlation between Pd and vb=Vtot

for each of the distinct basins i obtained from the direct
enumeration. The dashed line is not a fit but corresponds to
the relation Pd ¼ vb=Vtot. Thus, Fig. 1 shows that the free-
energy calculation of the basin volumes works very well,
even though the shapes of the high-dimensional basins are
very complicated.

It is straightforward to calculate the average basin vol-
ume hvbi when all the distinct basins are known. But for
larger systems for which only a small subset of basins can
be identified, hvbi can be calculated only if the distribution
of basin volumes PðvbÞ scales in a known fashion with
system size. Figure 2 shows the cumulative distribution of
the basin volumes [Ið vb

hvbiÞ]. For larger N, the cumulative

distribution PðvbÞ is well represented by

IðxÞ ¼ ferf½a lnðxÞ þ b� þ 1gc
2

; (6)

where x ¼ vb

hvbi , while a, b, and c are adjustable parameters.

As N increases, a and c decrease slightly, while b in-
creases. Specifically, c ! 1, suggesting that the distribu-
tion PðvbÞ becomes log normal for larger systems.
This result is perhaps not surprising if one expects

the distribution of the entropy of states within a basin (the
logarithm of the basin volume) to be Gaussian in the
thermodynamic limit. If this is indeed the case, then one
can compute the average basin volume (and hence the total
number of distinct basins) from a simulation that samples
only a fraction of all basins.
Once IðvbÞ has been obtained for a given system size,

the configurational entropy Sc follows, using Eq. (4).
Figure 3(a) shows that the configurational entropy Sc ¼
kB ln�c is extensive; i.e., it scales linearly with N. This is
expected for large systems [5,19] but not necessarily for
the sizes studied here. Figure 3(b) shows the variation of Sc
with the packing fraction �. The number of distinct states
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FIG. 2 (color online). Cumulative distribution of the basin
volume Ið v

hviÞ for binary mixtures with N ¼ 10 (black circles),

12 (red squares), 14 (blue diamonds), and 16 (purple triangles),
all at � ¼ 0:9. The orange solid curve shows the quasi-log-
normal fit to the N ¼ 16 data according to Eq. (6) with a ¼ 0:23,
b ¼ 0:60, and c ¼ 1:04.
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FIG. 1 (color online). Probability of finding a given minimum
calculated in two ways: from direct enumeration Pd and from
MC calculations of the basin volume relative to the total volume
of configuration space, vb=Vtot. Included are systems at packing
fraction � ¼ 0:9 of N ¼ 8 (black circles), 10 (red squares), 12
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squares) compared to volumes vb calculated by the L-BFGS

algorithm. The dashed black line is vCGðSDÞ
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increases as � decreases, as expected. Note that Scð�Þ is
the configurational entropy of distinct jammed energy
minima in soft-sphere packings, or, equivalently, the en-
tropy of distinct mechanically stable packings.

However, the entropy of distinct mechanically stable
packings of hard spheres S0ð�Þ is not the same as that
for soft spheres Scð�Þ. To obtain the former quantity, we
must look only at soft-sphere packings that are at the
jamming threshold (i.e., at zero pressure, p ¼ 0) at each
packing fraction [4]. Fortunately, we can calculate this
directly from the sampled soft-sphere minima without
introducing a protocol for bringing the system to p ¼ 0
that might bias the weightings of the resulting states [15].
We calculate the distribution Pð�;pÞ of basins whose
minima have pressure p at � and use the average basin
volume hvbi to obtain the density of states of distinct
energy minima �ð�;pÞ, with pressures between p and
pþ dp, via Eq. (4). The entropy of distinct jammed
hard-sphere packings is then S0ð�Þ ¼ Scð�;p ¼ 0Þ ¼
kB ln�ð�;p ¼ 0Þ.

Figure 4 shows that S0ð�Þ increases with decreasing �
over the range studied. However, we also know that S0
must vanish at sufficiently small �. Thus, S0 must have a
maximum, in agreement with earlier estimates [15] and
theoretical predictions [8]. It would be interesting to ex-
plore the connection between this maximum and the
random close-packing density in large systems [20].

In summary, the free-energy method proposed here al-
lows us to compute the volume of individual basins in the
energy landscape of a many-particle system. This, in itself,
is an extremely useful result. We also find that from the
distribution of basin volumes we can obtain the number of
distinct energy minima (the number of distinct jammed

packings). Here, we have tested our method for small
systems where all basins can be identified by brute force,
but our method can be applied to far larger systems, where
direct enumeration is impossible. In practice, the reliability
of this approach depends strongly on the existence of a
universal form for the functional form of the distribution
basin volumes. Further tests are needed, but our results
suggest that a log-normal form may be appropriate for
larger system sizes.
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