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Rigorous upper limits on the vertical heat transport in two-dimensional Rayleigh-Bénard convection
between stress-free isothermal boundaries are derived from the Boussinesq approximation of the Navier-
Stokes equations. The Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to
Nu = 0.2891Ra*'2 uniformly in the Prandtl number Pr. This scaling challenges some theoretical argu-
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ments regarding asymptotic high Rayleigh number heat transport by turbulent convection.
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Rayleigh-Bénard convection is the buoyancy-driven
flow of a fluid heated from below and cooled from above.
It is important for a variety of systems in the engineering,
geophysical, and astrophysical sciences, and it has long
served as a fundamental paradigm of nonlinear science,
chaos, and pattern formation. Indeed, the Boussinesq
approximation to the Navier-Stokes equations with the
boundary conditions analyzed in this Letter was
Rayleigh’s original model for calculating conditions for
onset [1], it is the basis of the Lorenz equations [2], and it
formed the foundation of developments in the modern
mathematical theory of amplitude [3] and modulation [4]
equations. Most recently, Rayleigh-Bénard convection has
been the focus of a large body of experimental, computa-
tional, theoretical, and mathematical research aimed at
characterizing the fully turbulent dynamics for application
in geophysical and astrophysical regimes [5].

Convective fluid flow increases vertical heat transport
beyond the purely conductive flux. The dimensionless
enhancement factor, the Nusselt number Nu, is both of
fundamental interest for applications and the natural and
widely recognized measure of the intensity and effective-
ness of the motion. The most basic question for Rayleigh-
Bénard convection is the dependence of Nu on (i) the
strength of the thermal forcing, commonly expressed in
terms of a dimensionless Rayleigh number Ra, (ii) the
material properties of the fluid, which within the
Boussinesq approximation is set by the dimensionless
Prandtl number Pr, the ratio of the fluid’s momentum and
thermal diffusion coefficients, (iii) the geometry, typically
the aspect ratio of the container, and (iv) the boundary
conditions. The connection between these variables is
generally complex and often not even unique, but in the
“ultimate” high Rayleigh number regime when the flow is
turbulent, the presumed functional relation between the
Nu, Pr, and Ra is Nu ~ Pr”Raf. Experiments and simula-
tions with Pr = O(1) and no-slip boundary conditions
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suggest a scaling exponent 0.27 =< B =< 0.40 at the highest
available Ra [5,6]. Various theories suggest (modulo pos-
sible logarithmic corrections) that Nu ~ Pr!/?Ra'/? as
Ra — oo [7-9]. Rigorous analyses of the Boussinesq model
with no-slip velocity and isothermal (fixed temperature)
[10,11] or fixed heat flux [12] or mixed temperature [13]
boundary conditions yield upper bounds of the form
Nu = cRa'/? with prefactors 0 < ¢ < oo independent of
Pr, so B =5 and y = 5 cannot both hold for very large
Pr. The Nu-Ra relation is certainly different at Pr = oo
where theory suggests [14] and analysis proves [15] (mod-
ulo possible logarithmic corrections) that Nu < Ra'/3.

Two-dimensional Rayleigh-Bénard convection displays
many of the physical and turbulent transport features of
three dimensional convection and has long been utilized as
a test-bed for theoretical concepts [16,17]. The effect of
free-slip (no-stress) velocity boundary conditions on de-
veloped turbulent convection has largely been unexplored
although we note that the rigorous scaling bound reported
here was anticipated by recent numerical and perturbative
investigations of transport limits for finite [18] and infinite
[19,20] Prandtl numbers. This Letter bridges that gap with
a proof that Nu = 0.2891Ra%/'2 uniformly in 0 < Pr < oo
for the Boussinesq model in two spatial dimensions with
fixed-temperature and free-slip boundaries. This result
refutes predictions of a Nu ~ Ra'/? ultimate regime insofar
as the theoretical arguments do not refer specifically to the
boundary conditions or the spatial dimension. This issue is
discussed further in the conclusion section at the end of the
Letter. Meanwhile the proof of the bound is presented in
sufficient detail immediately below for motivated readers
to reproduce the calculation in its entirety. The key new
idea used to derive the result emerged from intuition
developed in numerical studies of upper bounds [18,19]:
implement and exploit the bulk averaged enstrophy
balance available for two-dimensional flows with free-
slip boundaries to decrease the upper bound.
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The dimensionless equations of motion for the

Boussinesq approximation are
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where the Prandtl number Pr = v/« is the ratio of the
fluid’s kinematic viscosity v to its thermal diffusivity «,
and the Rayleigh number Ra = gaATh?/vk where g is
the acceleration of gravity, « is the fluid’s thermal expan-
sion coefficient, and AT is the imposed temperature drop
across the layer of thickness h. Lengths are measured in
units of &, time in units of A2 /K, and temperature in units
of AT. The velocity vector field u(x, y, 1) = fu(x, v, 1)+
jv(x, y, t) satisfies no-penetration and free-slip (stress-
free) boundary conditions, and the temperature field
T(x, y, t) is isothermal on the vertical boundaries at y = 0
and y = 1 as shown in Fig. 1. All dependent variables, u, v,
T, and the pressure field p(x,y,t), are periodic in the
horizontal direction x with period I' (the aspect ratio).

Taking the curl of (1) one obtains the evolution equation

for the scalar vorticity @ = dv/dx — du/dy,

i(a—w—i-u~Va))=V2w+Ra£. 4)
Pr\ ot ax

The boundary conditions on # and v imply that @ = 0 on
the vertical boundaries at y = 0 and y = 1.

The goal of the analysis is to use the equations of motion
to derive upper bounds on the Nusselt number defined as
Nu = 1 + (vT), where (-) represents the spatial and long
time average, in terms of Ra, Pr, and I". Toward this end we
utilize the background method [21], a mathematical device
introduced by Hopf to establish the existence of weak
solutions to the Navier-Stokes equations in bounded
domains [22]. For convection problems the background
method involves decomposing the temperature field into
a background profile 7(y) which satisfies the vertical
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FIG. 1. Geometry for the 2d stress-free convection problem.
Boundary conditions for 7, u, v, and the vorticity w at the
isothermal no-slip vertical boundaries are shown. All these
variables as well as the pressure p are periodic in the horizontal
direction with period I'.

boundary conditions [7(0) = 1 and 7(1) = 0] and a per-
turbation term 6(x, y, ) satisfying homogeneous boundary
conditions [0(x, 0,7) = 0 = 6(x, 1, 1)] so that T(x, y, 1) =
7(y) + 0(x, y, t) [11]. Implementing this decomposition the

temperature Eq. (3) implies
‘z_f uVO=V20+70) — P G)

Then the equations of motion together with the boundary
conditions and the background decomposition imply
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where || - ||, is the L? norm on the spatial domain and the
elementary identity ||Vull3 = |loll5 was used in (6).

It is well known that the equations of motion imply
Nu = (||VTI|?) [10,11]. Thus, given coefficients a and b
with precise values to be determined, combining (6)—(9)
according to

b a
R_ax(6)+m><(7)+2><(8)+(9), (10)

applying the long time average—remarking that it can be
shown within the background method that the time aver-
ages of the time derivatives vanish [11,21]—and dividing
by I', the Nusselt number is expressed

1 1 1
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where
b
— 2+ a 2+_ 2+ /
Q = (V0P + 55 Vol + L loP + 27700
a 06
_ R—al/2 w£> (12)

Hence if we can choose the background profile 7(y) and
coefficients a >0 and 0 < b <1 so that @ =0 for all
relevant #, w and v, then the first term on the right hand
side of (11) is an upper bound on Nu. For the problem at
hand we may use the piecewise linear profile shown in
Fig. 2 where the thickness & of the “boundary layers™ is to
be determined as a function of Ra to satisfy @ = 0. With
this choice of 7(y) the bound will be

1 b

Nu = - .
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(13)
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FIG. 2. Background profile with boundary layers of thickness
0< 6 =Jinwhich 7'(y) = —55; 7(y) =0for § <y <1-34.

Applying the horizontal Fourier transform and introduc-
ing the shorthand D = d%, it is evident that positivity of @
is equivalent to the positivity of

a
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for each horizontal wave number k where || - || is now the
L? norm on complex valued functions of y € [0, 1] and

Re{-} indicates the real part of a complex quantity. The
Cauchy-Schwarz and Young inequalities imply
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so dropping the manifestly non-negative term ||Da,||?,
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Restricting a®> < 4b, the task is to dominate the indefinite

boundary layer integrals by the positive definite terms.
The Fourier coefficients of the vertical velocity and

vorticity (suppressing the time dependence) are related by

ikd(y) = D*0i(y) — k>0 (). (17)

Integrating the modulus squared of both sides with a
simple integration by parts implies

K l&pll3 = ID*vill? + 2K IDu P + KHllvgll>. (18)

On the other hand, integration by parts and the Cauchy-
Schwarz and Young inequalities yield

2 . 1 R R
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so that, combining (18) and (19),
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A similar pointwise bound holds for the imaginary part of
D1, (y) so its modulus squared satisfies

. V278, . 8 X
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Thus, integrating D9 from 0 to y or from 1 — y to 1 and
applying Holder’s inequality, it is evident that

. 33/4 . R
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Because 0,(y) vanishes at y = 0 and 1, applications of
the fundamental theorem of calculus and Cauchy-Schwarz
inequality yield the pointwise bounds
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Using (24)—(26), we conclude
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Inserting a = \%1—5 and b = Linto (28)—chosen to minimize

$ =0 (28

the prefactor in the bound—and minimizing the suitable o

. . . . 4/3.55/12 —
over k, this is satisfied by choosing & = 23— Ra~¥/12
where k = sl7 Ral/* is the minimizing wave number.

Inserting these 6 and b into (13) we see that for Ra > 33.57
(actually for Ra > 2 7%)

57/12 X 33/4

Nu 57213/3

1
Ra*/1? — 7= 0.2891Ra¥'%. (29
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This % exponent for the Nu-Ra upper bound scaling,
albeit with a prefactor 0.142, was conjectured by Otero
from a numerical study nearly a decade ago [18]. The proof
here puts that result on firm analytical ground. The Nu-Ra
scaling and the distinguished horizontal wave number
scaling k ~ Ra'/* also agree with those conjectured by
Ierley, Plasting, and Kerswell following a careful combi-
nation of numerical and asymptotic analyses of the upper
bound problem for infinite Prandtl number Rayleigh-
Bénard convection in three spatial dimensions with free-
slip boundaries [20]. In fact the analysis in this Letter can
be extended to that case because there is no vortex stretch-
ing at Pr = 0o so an enstrophy balance akin to (7) is
realized for free-slip boundaries [23].

While the rigorous bound B = 15—2 ~ 0.4167 for the
model of Rayleigh-Bénard convection considered here is
still well above that observed in most experiments and
direct numerical simulations, it has significant ramifica-
tions from a theoretical point of view. There are several
theoretical predictions of Ra'/? scaling of the heat trans-
port in the ultimate regime of asymptotically high Raleigh
numbers [7-9] and the result proved here shows that those
arguments cannot be correct without plainly appealing to
no-slip boundary conditions or directly relying on three
dimensional dynamics (or both).

Perhaps the simplest scaling argument—making no
mention of boundaries or boundary conditions or the spa-
tial dimension—is the hypothesis that the physical heat
transport is independent of the molecular transport coef-
ficients, i.e., the kinematic viscosity » and the thermal
diffusivity «, in the fully developed turbulent regime [8].
This implies Nu ~ Pr'/2Ra'/2. A more physically explicit
version of the argument proceeds from the assumption that
the rate-limiting process is not transferring heat across
boundary layers into the bulk, but rather is the time it takes
to adiabatically transport hot and cold fluid elements across
the layer accelerated by the reduced gravity « AT g neglect-
ing frictional forces. Then the vertical velocity scale of

rising or falling elements is \/gaATh and their heat con-
tent is O(AT), so at sufficiently high density of such
elements the heat flux is ~(gah)'/2AT3/2. When normal-
ized by the conductive heat flux kAT /h, this again yields
Nu ~ Pr'/?Ra'/2.

More sophisticated arguments [7,9] produce similar pre-
dictions. It has also been proposed that the % exponent will
appear if the physical boundary layers are negligible (as
might be hypothesized when Ra — o0) or absent alto-
gether. This leads to the consideration of ““homogeneous”
Rayleigh-Bénard convection where the Boussinesq equa-
tions with a linear background profile are posed on a fully
periodic domain. Direct numerical simulations in three
dimensions and a closure theory have indicated that this
scaling emerges for some aspect ratios [24,25] although no
upper bounds on the heat transport can possibly exist and
the genuineness of statistical steady states is questionable
for this formulation [25,26].

The Nu < Ra’%/'2 bound derived here raises questions of
precisely how the spatial dimension and the nature of even
very thin boundary layers enter into the problem at high
Rayleigh numbers. At least in two dimensions with free-
slip boundaries, no matter how high the Rayleigh number
is it is apparent that boundary layers continue to play a
limiting role in the turbulent heat transport.
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