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We show that the superconformal index (the partition function on the three-sphere times a circle) of a

certain class of 4D supersymmetric field theories is exactly equal to a partition function of q-deformed

nonsupersymmetric 2D Yang-Mills theory.
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Introduction.—In this Letter we describe a new powerful
duality, relating physics in four and in two dimensions. We
will argue that for a large class of four-dimensional super-
conformal gauge theories, nontrivial information about
the operator spectrum is captured by correlators of a two-
dimensional nonsupersymmetric gauge theory. The 4D
side of the duality is generically strongly coupled, and
difficult to analyze directly; on the other hand, calculations
on the 2D side will be explicit and algorithmic. Thus our
conjecture gives new information about strongly coupled
4D field theories.

Our proposal is in the same spirit as the Alday-Gaiotto-
Tachikawa (AGT) relation between the partition function
of a 4D N ¼ 2 gauge theory on S4 and a correlator in 2D
Liouville-Toda theory [1]. In our case, the 4D observable
is a (twisted) supersymmetric partition function of an
N ¼ 2 superconformal field theory on S3 � S1, also
known as the superconformal index. We will focus on a
‘‘reduced’’ index that depends on a single fugacity q. On
the 2D side, instead of Liouville-Toda theory we have the
zero-area limit of q-deformed Yang-Mills theory. The to-
pological nature of this 2D theory dovetails with the inde-
pendence of the 4D index on the gauge theory moduli.

We begin by reviewing the 4D side of the duality. The
full N ¼ 2 superconformal index is defined as [2]

I ¼ Trð�1ÞFpðE�RÞ=2þj1qðE�RÞ=2�j1u�ðrþRÞ; (1)

where the trace is over the states of the theory on S3 (in the
usual radial quantization) and F the fermion number. The
symbol E stands for the conformal dimension, (j1, j2) for
the Cartan generators of the SUð2Þ1 � SUð2Þ2 isometry
group, and (R, r) for the Cartan generators of the SUð2ÞR �
Uð1Þr R symmetry. The fugacities p, q, and u keep track of
the maximal set of quantum numbers commuting with a

single real supercharge, Q � ~Q :
1�, which with no loss

of generality has been chosen to have R ¼ 1
2 , r ¼ � 1

2 ,

j1 ¼ 0, j2 ¼ � 1
2 , and (of course) E ¼ 1

2 . Only states that

obey 2fQ;Qyg ¼ E� 2j2 � 2Rþ r ¼ 0 contribute to
the index. Note that the variables p, q, and u are related

to t, y, v of [3] as p ¼ t3y, q ¼ t3

y , and u ¼ v
t . For a theory

with a weakly coupled Lagrangian description the index is
computed explicitly by a matrix integral,

I ðp; q; u;VÞ

¼
Z
½dU� exp

�X1
n¼1

1

n

X
j

fðjÞðpn; qn; unÞ�Rj
ðUn; VnÞ

�
:

Here U denotes an element of the gauge group, with ½dU�
the invariant Haar measure, and V an element of the flavor
group. The sum is over the different N ¼ 2 supermultip-
lets appearing in the Lagrangian, with Rj the representa-

tion of the jth multiplet under the flavor and gauge groups

and �Rj
the corresponding character. The functions fðjÞ

are the ‘‘single-letter’’ partition functions, fðjÞ ¼ fV or

fðjÞ ¼ fH=2 according to whether the jth multiplet is an
N ¼ 2 vector or N ¼ 2 1

2 -hypermultiplet. They are

easily evaluated [2]:

fVðp; q; uÞ ¼ ðu� 1
uÞ

ffiffiffiffiffiffi
pq

p � ðpþ qÞ þ 2pq

ð1� pÞð1� qÞ ; (2)

fH=2ðp; q; uÞ ¼
ðpqÞ1=4 1ffiffi

u
p � ðpqÞ3=4 ffiffiffi

u
p

ð1� pÞð1� qÞ : (3)

We will focus on a reduced index, by setting u ¼ 1 and
p ¼ q, which leads to the significant simplification

fV ¼ �2q

1� q
; fH=2 ¼ q1=2

1� q
: (4)

We consider a class ofN ¼ 2 4D superconformal theories
(SCFTs) constructed from a set of elementary building
blocks [4]. The building blocks are isolated SCFTs with
flavor symmetryG1 �G2 �G3, Gi � SUðNÞ for given N.
In the simplest case of N ¼ 2, the only building block is
the free 1

2 -hypermultiplet in the trifundamental representa-

tion of the SUð2Þ3 flavor group. For N > 2 most of the
building blocks are intrinsically strongly interacting theo-
ries with no Lagrangian description. One can ‘‘glue to-
gether’’ two building blocks by gauging a common SUðNÞ
flavor symmetry. Iterating this procedure one constructs
a large class of N ¼ 2 gauge theories, the SUðNÞ
‘‘generalized quivers’’ [4]. There is a geometric interpre-
tation of this construction, where one regards the building
blocks as three-punctured spheres, with the punctures
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associated to the flavor symmetries; the gluing operation is
performed by connecting the punctures with cylinders. The
complex structure moduli of the resulting punctured
Riemann surface correspond to the complexified gauge
couplings. The same punctured Riemann surface can often
be obtained by following several different gluing paths
(different pairs-of-pants decompositions). The generalized
quiver theories associated to different decompositions of
the same surface are related by S dualities [4].

The index of a generalized quiver can be written in terms
of the index of its constituents. We parametrize the index of
an elementary building block (3-punctured sphere) by
‘‘structure constants’’ INðx1;x2;x3Þ where xi are fugac-
ities dual to the Cartan subgroup of Gi: except in special
cases these are a priori unknown functions. On the other
hand, we can easily write the index �NðxÞ of the SUðNÞ
vector multiplets used in the gluing (propagators),

�NðxÞ ¼ exp

"
�2

X1
n¼1

1

n

qn

1� qn
�adjðxnÞ

#
:

For example, gluing two 3-punctured spheres with one
cylinder one obtains the following index:

Z
½dUðxÞ�INðx1;x2;xÞ�NðxÞINðx;x3;x4Þ: (5)

By defining a metric

�Nðx1;x2Þ � �Nðx1Þ
X

R2UN

�Rðx1Þ�Rðx2Þ; (6)

where UN is the set of irreducible finite-dimensional
representations of SUðNÞ, we can rewrite (5) as

I Nðx1;x2;xÞ � �Nðx;x0Þ � INðx0;x3;x4Þ; (7)

where � multiplication means integration over the Haar
measure. S duality then implies that the metric and struc-
ture constants form an associative algebra and thus a 2D
topological field theory (TQFT) [3]. (Strictly speaking,
the state space at each puncture, which is spanned by
Gi representations, is infinite dimensional, so one must
slightly relax the standard mathematical axioms for a
TQFT.) Associativity was directly verified for the SUð2Þ
and SUð3Þ generalized quiver theories in [3,5], for generic
values of the fugacities p, q, and u. In the following wewill
identify the 2D topological theory implicitly defined by the
reduced index with an explicit model: q-deformed Yang-
Mills (qYM) theory in the zero-area limit.

SUð2Þ generalized quivers.—Let us start with the sim-
plest case, the SUð2Þ quivers. Here the building blocks are
free trifundamental 1

2 hypermultiplets,

I222ða1; a2; a3Þ

¼ exp

�X1
n¼1

1

n

qn=2

1� qn
�hðan1Þ�hðan2Þ�hðan3Þ

�
:

Remarkably, one can prove (e.g., by comparing analytic
properties) that I222ða1; a2; a3Þ admits the equivalent
representation

I 222¼ðq2;qÞ1
Y3
i¼1

��1=2
2 ðaiÞ

X
R2U2

�Rða1Þ�Rða2Þ�Rða3Þ
½jRj�q :

Here ða;qÞ1 � Q1
i¼0ð1� aqiÞ. jRj denotes the dimension

of the representation R. The symbol ½x�q denotes the

q-deformed number, ½x�q�ðq�x=2�qx=2Þ=ðq�1=2�q1=2Þ.
The SUð2Þ characters are given by �Rðq1=2Þ ¼ ½jRj�q.
The structure constants contain the factors

Q
i�

�1=2
2 ðaiÞ,

which cancel with the metric �2ðaiÞ when two punctures
are glued. It is then natural to define rescaled structure
constants and metric,

Î222ða1; a2; a3Þ ¼ N 222ðqÞ
X

R2U2

�Rða1Þ�Rða2Þ�Rða3Þ
½jRj�q ;

�̂2ða; bÞ ¼
X

R2U2

�RðaÞ�RðbÞ; (8)

where N 222ðqÞ ¼ ðq2; qÞ1. Up to the overall normaliza-
tion N 222, these are precisely the structure constants and
metric of 2D qYM in the zero-area limit [6,7].
The above implies that by setting one of the SUð2Þ

fugacities to q1=2 we ‘‘close’’ a puncture,

Î 222ða; b; q1=2Þ ¼ N 222ðqÞ�̂2ða; bÞ:
Applying this procedure again, we close another puncture
and obtain the one-punctured sphere (the cap). For higher-
rank groups we will encounter a similar procedure: setting

some combination of the flavor fugacities to q1=2 one
obtains punctures with reduced flavor symmetry.
SUð3Þ generalized quivers.—Next let us consider the

SUð3Þ generalized quivers. Here two new generic features
appear. First, the basic building block is an interacting
theory with no Lagrangian description, the E6 SCFT
[4,8]. Second, there is more than one type of puncture: in
addition to the maximal SUð3Þ flavor puncture there is a
puncture with reduced flavor symmetry, Uð1Þ [4].
The representations of SUðNÞ are parametrized by N

integers �1 � �2 . . . � �N�1 � �N ¼ 0, the row lengths
of the corresponding Young diagram. The q-deformed
dimension of the representation is

dim qR� ¼ Y
i<j

½�i � �j þ j� i�q=½j� i�q;

and the characters are given by Schur polynomials

��ðxÞ ¼ detðx�jþk�j
i Þ= detðxk�j

i Þ:
Specializing to SUð3Þ we can parametrize all the Young
diagrams by (�1, �2). We observe again that the
q dimension of a representation is equal to the group
character with a particular choice of fugacities,
��1;�2

ðq; 1; q�1Þ ¼ dimqR�1;�2
. The sphere with three
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maximal punctures corresponds to the strongly coupled E6

SCFT [the SUð3Þ3 flavor symmetry is accidentally en-
hanced to E6]. This theory has no Lagrangian description
and thus we do not have a direct way to compute its index.
However, this index was computed [5] indirectly by em-
ploying Argyres-Seiberg duality [8]. Inspired by the SUð2Þ
case, we conjecture that the index IE6

ðfxig3i¼1Þ of the E6

SCFT is proportional to the structure constants CSUð3Þq of

q-deformed SUð3Þ Yang-Mills,

I E6
ðxiÞ ¼ N 333ðqÞ

�Y3
i¼1

��1=2ðxiÞ
�
CSUð3ÞqðxiÞ;

where

CSUðNÞqðxiÞ ¼
X

R2UN

�Rðx1Þ�Rðx2Þ�Rðx3Þ
dimqR

;

andN 333ðqÞ a normalization factor. Using MATHEMATICA,
we have checked this proposal against the results of [5] to
several orders in q, and in the process determined the
normalization to be N 333ðqÞ ¼ ðq2;qÞ1ðq; qÞ1.

Another building block is given by a sphere with two
SUð3Þ punctures and one Uð1Þ puncture. This corresponds
to a free hypermultiplet in the bifundamental of SUð3Þ2
and charged under the Uð1Þ. The index of this theory is
explicitly given by

I 331ðx1;x2;aÞ ¼ exp

�X1
n¼1

1

n

qn=2

1� qn
�hypðxn

1 ;x
n
2; a

nÞ
�
;

where the flavor character �hypðx1;x2;aÞ is given byP
i;jðxi1xj2aþ 1

xi
1
xj
2
a
Þ. One can verify by series expansion in

q that

I 331ðx1;x2;aÞ ¼ CSUð3Þqðx1;x2;aÞ
Q

2
i¼1 �

�1=2ðxiÞQ
2
‘¼1ð1� q‘Þ

� exp

�X1
n¼1

q3n=2

1� qn
a3n þ a�3n

n

�
; (9)

with

CSUð3Þqðx1;x2; aÞ

¼ X1
R2U3

�Rðx1Þ�Rðx2Þ�Rðaq1=2; aq�1=2; a�2Þ
dimqR

:
(10)

SUðNÞ maximal and minimal punctures.—The generic
building block of a higher-rank quiver is an interacting
SCFT with no Lagrangian description. Unlike the case of
SUð2Þ and SUð3Þ quivers it is very hard to calculate the
index of these theories, either directly or indirectly.
However, we can naturally extrapolate the relation to 2D
qYM to higher-rank groups. We conjecture that the
reduced index of the theory corresponding to sphere with
three maximal punctures (the TN theory of [4]) is

I TN
ðxiÞ ¼

YN
‘¼2

ðq‘; qÞ1
Y3
i¼1

��1=2ðxiÞCSUðNÞqðxiÞ:

This conjecture can be tested against the numerous
S dualities of the generalized quivers [4]. For instance, a
linear superconformal quiver theory with two SUð4Þ nodes
admits a dual description in terms of T4 coupled to SUð3Þ
gauge theory which in turn is coupled to an SUð2Þ gauge
theory with a single hypermultiplet. We have checked, in
the q expansion, that the indices on both sides of the duality
indeed match if one uses our conjecture for the T4 index.
Another test is to compare with physical expectations for
the spectrum of protected operators. A class of protected
operators in the TN theories are the Higgs branch operators
[9]. These come in two families: E ¼ 2, R ¼ 1 in
flavor representation ðadj; 1; 1Þ � ð1; adj; 1Þ � ð1; 1; adjÞ
and E ¼ N � 1, R ¼ N�1

2 in representation ðN;N;NÞ �
ð �N; �N; �NÞ. It is straightforward to see that these operators
appear in our conjecture for the index: the first family

comes from the �ðxÞ�1=2 factors, and the second from
the �hðx1Þ�hðx2Þ�hðx3Þ and � �hðx1Þ� �hðx2Þ� �hðx3Þ terms
in CSUðNÞq .
We can generalize the conjecture to the structure con-

stants with two maximal punctures and one Uð1Þ puncture,

I NN1ðx1;x2; aÞ ¼ exp

�X1
n¼1

1

n

qn=2

1� qn
�hypðxn

1 ;x
n
2; a

nÞ
�

¼ CSUðNÞqðx1;x2; aÞQ
2
i¼1 �

1=2ðxiÞ
Q

N�1
‘¼1 ð1� q‘Þ

� exp

�X1
n¼1

qNn=2

1� qn
aNn þ a�Nn

n

�
;

where structure constants CSUðNÞqðx1;x2; aÞ are

CSUðNÞqðx1;x2;aÞ¼
X

R2UN

1

dimqR
�Rðx1Þ�Rðx2Þ

��RðaqðN�2Þ=2; . . . ;aq�ðN�2Þ=2;a1�NÞ:
(11)

Again we have verified this conjecture in the q expansion.
Generic punctures.—Generic punctures are classified

[4] by the embeddings SUð2Þ 	 SUðNÞ, which are speci-
fied by the decomposition of the fundamental of SUðNÞ
into SUð2Þ representation. This information can be en-
coded into a Young diagram with N boxes, where the
height of each column denotes the dimension of an
SUð2Þ representation. The commutant of this embedding
is the flavor symmetry associated to the puncture. The
maximal puncture corresponds to a single-row diagram,
the closed puncture (i.e., no puncture) corresponds to a
single-column diagram. We are lead to the following
conjecture for the index of a theory with three generic
punctures corresponding to Young diagrams �i
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Ið�1;�2;�3Þ ¼ N f�igðqÞ
Y3
i¼1

B�i
ð�iÞCSUðNÞð�1;�2;�3Þ

with �i labeling an association of flavor fugacities accord-
ing to the Young diagram �i. The rule to associate the
flavor fugacities to the SUðNÞ fugacities is illustrated in
Fig. 1. The normalization factors (N and B) for generic
punctures can be in principle obtained by employing differ-
ent S dualities of the quivers [4]. As an example, consider
the E7 SCFTwhich is given by a sphere with two maximal
punctures of SUð4Þ and one square Young diagram with
four boxes. Following the above procedure and fixing the
normalization from the relevant Argyres-Seiberg duality
[8], we are led to propose

IE7
ðx;y;aÞ

¼
exp

�P1
n¼1

qnð1þqnÞ
1�qn

a2nþa�2n

n

�
�1=2ðxÞ�1=2ðyÞð1�qÞð1�q2Þ2ð1�q3Þ

� X
R2U4

�RðxÞ�RðyÞ�Rðq1=2a;q�1=2a;q1=2=a;q�1=2=aÞ
dimqR

;

Here x, y label the two sets of SUð4Þ fugacities and a the
SUð2Þ fugacity. We have verified perturbatively in q that
this expression is indeed E7 covariant—a tight check of our
logic.

Discussion.—We have given compelling evidence that
the reduced superconformal index of an N ¼ 2 general-
ized SUðNÞ quiver theory is exactly computed by a corre-
lator in 2d SUðNÞq Yang-Mills theory. This duality is a new

tool to investigate interacting field theories without a
Lagrangian description. For example, it should be useful
to study the constraints obeyed by the Higgs branch
operators, generalizing to N > 3 the analysis of [10].
Two-dimensional qYM first appeared in a physical setting
in the context of counting BPS states [6], and it would be
interesting to find a relation with our work. An obvious

question is whether our results can be generalized to the
full index, with all fugacities turned on. It is already
remarkable that the known structure constants of the
SUð2Þ quivers implicitly define a (q, p, u) deformation
of SUð2Þ Yang-Mills theory. Work is in progress in inves-
tigating the nature of this deformation, in order to extra-
polate it to N > 2. The q and p fugacities appear on a
symmetric footing, in a way which is strongly suggestive
of an elliptic, or ‘‘dynamical,’’ deformation of the quantum
group structure SUðNÞq that we have uncovered for p ¼ q,

u ¼ 1. Indeed the full index is most elegantly expressed
[11] in terms of elliptic Gamma functions [12]. Finally, a
more conceptual understanding of the duality would be
very desirable. As for the AGT correspondence [1], the
existence, but not the details, of a 4D/2D relation can be
traced to the definition of the 4D SCFTas the infrared limit
of the 6D (2, 0) theory on a Riemann surface. Whether
this intuition can be turned into a microscopic derivation
remains to be seen.
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