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We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier

with linearly drifting averagewhich captures themain features of the ellipsoidal collapsemodel.We evaluate

the non-Markovian corrections due to the sharp filtering of the linear density field in real space with a path-

integral method. We find an unprecedented agreement with N-body simulation data with deviations& 5%

over the range ofmasses probed by the simulations. This indicates that the excursion set in combinationwith

a realistic modeling of the collapse threshold can provide a robust estimation of the halo mass function.
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A large body of evidence suggests that dark matter (DM)
plays a crucial role in the formation, evolution, and spatial
distribution of cosmic structures [1–4]. Central to the DM
paradigm is the idea that initial density fluctuations grow
under gravitational instability eventually collapsing into
virialized objects, the halos. It is inside these gravitation-
ally bounded structures that cooling baryonic gas falls
in to form the stars and galaxies we observe today.
Consequently, the study of the halo mass distribution is
of primary importance in cosmology. In the Press-
Schechter approach [5], the number of halos in the mass
range [M, Mþ dM] can be written as

dn

dM
¼ fð�Þ ��

M2

d log��1

d logM
; (1)

where �� is the background matter density and �ðMÞ is the
root-mean-square fluctuation of the linear dark matter
density field smoothed on a scale RðMÞ (containing a
mass M), with

�2ðMÞ � SðMÞ ¼ 1

2�2

Z
dkk2PðkÞ ~W2½k; RðMÞ�; (2)

where PðkÞ is the linear DM power spectrum and ~Wðk; RÞ is
the Fourier transform of the smoothing (filter) function
in real space. In Eq. (1), the function fð�Þ ¼ 2�2F ð�2Þ,
known as ‘‘multiplicity function,’’ encodes the effects of
the gravitational processes responsible for the formation of
halos through its dependence on F ðSÞ � dF=dS, with
FðSÞ being the fraction of mass elements in halos of
mass >MðSÞ. Hereafter, we will refer to fð�Þ simply as
the halo mass function.

The collapse of halos is a highly nonlinear gravitational
process that has been primarily investigated using numeri-
cal N-body simulations. Over the past few years several
numerical studies have measured fð�Þ at few percent
uncertainty level for various cosmologies and using differ-
ent halo detection algorithms (see, e.g., [6–9]). On the
other hand, we still lack an accurate theoretical estimation
of the halo mass function. Following the seminal work by

Press and Schechter [5], the excursion set theory [10] has
provided us with a consistent mathematical framework for
computing fð�Þ from the statistical properties of the initial
DM density field (for a review, see [11]). Nevertheless, an
analytical derivation of fð�Þ can be obtained only for a
top-hat filter in Fourier space (sharp-k filter). Although
Monte Carlo simulations can be used in the case of generic
filters (see, e.g., [10,12]), most of the work in the literature
has focused on the modeling of the halo collapse condi-
tions and the comparison with N-body simulations using
numerical and semianalytical techniques which assume the
sharp-k filter (see, e.g., [13–16]). However, such a smooth-
ing function does not correspond to any realistic halo mass
definition. The issue has been recently addressed by
Maggiore and Riotto [17] who made a major contribution
by introducing a path-integral method that extends the
analytical computation to generic filters.
In this Letter we present the first thorough comparison

against N-body simulation data of the excursion set mass
function with top-hat filter in real space for a stochastic
barrier model which encapsulates the main characteristics
of the ellipsoidal collapse of dark matter. A detailed deri-
vation of these results is given in a companion paper [18].
Let us consider the DM density contrast, �ðxÞ, smoothed

on the scale R,

�ðx; RÞ ¼
Z

d3yWðjx� yj; RÞ�ðyÞ; (3)

where Wðx; RÞ is the smoothing function in real space.
Bond et al. [10] have shown that at any given point in
space, �ðx; RÞ performs a random walk as a function of the
variance of the smoothed linear density field SðRÞ.
The formation of halos of mass M corresponds to trajecto-
ries �ðSÞ crossing for the first time a barrier B at SðMÞ,
i.e., �ðSÞ ¼ B, where the value of B depends on the
assumed gravitational collapse criterion. In the case of
the spherical collapse model [19] B ¼ �c, that is the
linearly extrapolated density of a top-hat spherical pertur-
bation at the time of collapse. Then, the evaluation of fð�Þ
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is reduced to computing the rate at which the randomwalks
hit the barrier for the first time, i.e., F ðSÞ ¼ dF=dS.

The nature of the random walk depends on the filtering
procedure, which specifies the relation between the
smoothing scale R and the halo mass definition M. For a
sharp-k filter, ~Wðk; RÞ ¼ �ð1=R� kÞ, and Gaussian initial
conditions, �ðSÞ performs a Markov random walk de-
scribed by the Langevin equation:

@�

@S
¼ ��ðSÞ; (4)

with noise ��ðSÞ such that h��ðSÞi ¼ 0 and
h��ðSÞ��ðS0Þi ¼ �DðS� S0Þ, where �D is the
Dirac function (for the full derivation, see, e.g., [11,17]).
As first shown in [10], the probability distribution of the
trajectories satisfies a simple Fokker-Planck equation with
absorbing boundary at �ðSÞ ¼ �c. The resulting first-
crossing distribution gives the Press-Schechter formula
[5] with the correct normalization factor (the so called
‘‘extended Press-Schechter’’).

However, the spherical collapse model is a simplistic
approximation of the nonlinear evolution of matter density
fluctuations. As shown in [20], initial Gaussian perturba-
tions are highly nonspherical. Hence, the collapse of a
homogeneous ellipsoid (see, e.g., [21]) should provide a
far better description. In such a model the critical density
threshold depends on the eigenvalues of the deformation
tensor, which are random variables with probability distri-
butions that depend on the statistics of the linear density
field [14,20,22–26]. Because of this, the barrier behaves
as a stochastic variable itself, performing a random
walk whose properties depend on the specificities of the
collapse model considered. For example, Sheth et al. [14]
showed that the average of the barrier is hBðSÞi ¼
�c½1þ �ðS=�2

cÞ��, with � ¼ 0:47 and � ¼ 0:615.
The recent analysis of halos in N-body simulations has

confirmed the stochastic barrier hypothesis [27]. Maggiore
and Riotto [28] have modeled these features assuming a
stochastic barrier with average hBðSÞi ¼ �c and variance
hðB� hBðSÞiÞ2i ¼ SDB, where DB is a constant diffusion
coefficient. Here, we improve their barrier model by assum-
ing a Gaussian diffusion with linearly drifting average
hBðSÞi ¼ �c þ �S [13] which approximates the ellipsoidal
collapse prediction [14]. Recently, a general analysis of
nondiffusive moving barriers has been presented in [29].
However, this work has mainly focused on the mass func-
tion in the presence of non-Gaussian initial conditions
rather than the comparison with Gaussian N-body simula-
tions. The Langevin equation for this barrier model reads as

@B

@S
¼ �þ �BðSÞ; (5)

where the noise �BðSÞ is characterized by h�BðSÞi ¼ 0 and
h�BðSÞ�BðS0Þi ¼ DB�DðS� S0Þ. Without loss of general-
ity we can assume that �BðSÞ and ��ðSÞ are uncorrelated.
It is convenient to introduce Y ¼ B� � and rewrite
Eqs. (4) and (5) as a single Langevin equation:

@Y

@S
¼ �þ �ðSÞ; (6)

with white noise �ðSÞ ¼ ��ðSÞ þ �BðSÞ such that
h�ðSÞi ¼ 0 and h�ðSÞ�ðS0Þi ¼ ð1þDBÞ�ðS� S0Þ. The
Fokker-Planck equation associated with Eq. (6) and de-
scribing the probability �0ðY0; Y; SÞ reads as

@�0

@S
¼ ��

@�0

@Y
þ 1þDB

2

@2�0

@Y2
; (7)

where we indicate with the ‘‘0’’ underscore the fact that�0

is associated to a Markov process.
The system starts at f�ð0Þ ¼ 0; Bð0Þ ¼ �cg; hence, we

solve Eq. (7) with initial condition Y0 ¼ �c and impose the
absorbing boundary condition at Y ¼ 0, i.e.,�0ð0; SÞ ¼ 0.
For a concise notation we omit the dependence on Y0

and simply refer to �0ðY; SÞ. By rescaling the variable
Y ! ~Y ¼ Y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
, a factorizable solution can be

found in the form �0ð ~Y; SÞ ¼ Uð ~Y; SÞ exp½cð ~Y � cS=2Þ�,
where c ¼ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
and Uð ~Y; SÞ satisfies a diffusion

equation. Using the above initial condition, the latter can
be solved with the image method [30] or by Fourier trans-
form. Thus, we obtain

�0ðY; SÞ ¼ eð�=1þDBÞðY�Y0��ðS=2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Sð1þDBÞ

p
�

�
e�ðY�Y0Þ2=ð2Sð1þDBÞÞ � e�ðYþY0Þ2=ð2Sð1þDBÞÞ

�
:

(8)

In general the Fokker-Planck equation for random walks
with nonlinear biased diffusion and absorbing boundary
condition does not have an exact analytic solution. This is
why we have assumed the linearly drifting average barrier
rather than the prediction of the ellipsoidal collapse model
[14]. As we will see later, having an exact analytical
solution greatly simplify the evaluation of the corrections
due to the smoothing function. We should remark that
the above solution is defined only for Y > 0. Since
the number of trajectories is conserved, then the
first-crossing distribution is obtained by derivingR
S
0 F 0ðS0ÞdS0 ¼ 1� R1

0 �0ðY; SÞdY from which we fi-

nally obtain the Markovian mass function

f0ð�Þ ¼ �c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDB

p
ffiffiffiffi
2

�

s
e�ð�cþ��2Þ2=ð2�2ð1þDBÞÞ; (9)

for � ¼ 0 and DB ¼ 0 this coincides with the
standard Markovian solution that gives the extended
Press-Schechter formula, while for DB ¼ 0 we recover the
solution for the nondiffusive linearly drifting barrier [11].
As mentioned earlier, a crucial point of this derivation is

the assumption of the sharp-k filter. In numerical N-body
simulations the mass definition depends on the halo detec-
tion algorithm. For instance, the spherical overdensity
(SOD) halo finder detects halos as groups of particles in
a spherical regions of radius R� containing a density
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�� ¼ � ��, with � an overdensity parameter usually fixed
to � ¼ 200. Thus, the halo mass is M ¼ 4=3�R3

���,

which is equivalent to having a sharp-x filter, or ~Wðk; RÞ ¼
3=ðkRÞ3½sinðkRÞ � kR cosðkRÞ�. However, in this case the
stochastic evolution of the system is no longer Markovian.
Hence, in order to consistently compare the excursion set
mass function with SOD estimates of fð�Þ it is necessary
to account for the correlations induced by ~Wðk; RÞ.

Maggiore and Riotto [17] have shown that these correla-
tions can be treated as perturbations about the ‘‘zero’’-order
Markovian solution. More specifically, the noise variable
�ðSÞ acquires a perturbative correction, h�ðSÞ�ðS0Þi ¼
ð1þDBÞ�DðS� S0Þ þ�ðS; S0Þ, which in the case of the
sharp-x filter can be approximated by �ðS; S0Þ � 	SðS0 �
SÞ=S0. For the concordance � cold DM model we find 	 �
0:47. Using the path-integral technique described in [17],
we compute the corrections to �0ðY; SÞ to first order in 	.
These consist of a ‘‘memory’’ term,

�m
1 ¼�@Y

Z S

0
dS0�ðS0;SÞ�f

0ðY0;0;S
0Þ�f

0ð0;Y;S�S0Þ;
(10)

and a ‘‘memory-of-memory’’ term

�m�m
1 ¼

Z S

0
dS0

Z S

S00
dS00�ðS0; S00Þ�f

0ðY0; 0; S
0Þ

��f
0ð0; 0; S00 � S0Þ�f

0ð0; Y; S� S0Þ; (11)

where�f
0ðY0; 0; SÞ,�f

0ð0;Y;SÞ and�f
0ð0; 0; SÞ in Eqs. (10)

and (11) are given by the finite time corrections of the
Markovian solution near the barrier (see [18]). We find

�f
0ðY0; 0; SÞ ¼ aY0

S3=2
ffiffiffiffi
�

p e�ðaðY0þ�SÞ2Þ=ð2SÞ; (12)

�f
0ð0; Y; SÞ ¼

aY

S3=2
ffiffiffiffi
�

p e�ðaðY��SÞ2Þ=ð2SÞ; (13)

�f
0ð0; 0; SÞ ¼

1

S3=2

ffiffiffiffiffiffiffi
a

2�

r
; (14)

where a � 1=ð1þDBÞ. Equation (10) can be computed
analytically, we find

�m
1 ¼ �~	aY0@Y

�
Yea�ðY�Y0��ðS=2ÞÞErfc

� ffiffiffiffiffiffi
a

2S

r
ðY0 þ YÞ

��
;

(15)

where ~	 ¼ 	=ð1þDBÞ. Since Eq. (15) is linear in Y, the
integration of F m

1 ðSÞ ¼ �@=@S
R1
0 �m

1 dY vanishes.

Thus, the memory term does not contribute to the mass
function independently of the barrier behavior (in agree-
ment with [17]). The double integral in the memory-of-
memory term cannot be computed analytically, in such a
case we expand the integrands in powers of � (given that
from the ellipsoidal collapse we expect�< 1). By comput-
ing Fm�m

1 ðSÞ ¼ �@=@S
R1
0 �m�m

1 dY and expressing the

results directly in terms of fð�Þ, we find the non-Markovian
correction to zero order in � (i.e., � ¼ 0) to be

fm�m
ð1Þ;�¼0ð�Þ ¼ �~	

�c

�

ffiffiffiffiffiffi
2a

�

s �
e�ða�2

cÞ=ð2�2Þ � 1

2
�

�
0;
a�2

c

2�2

��
;

(16)

where �ð0; zÞ is the incomplete Gamma function. Not
surprisingly this expression coincides with the memory-
of-memory term in [17]. The first order correction in � is
given by

fm�m
1;�ð1Þ ð�Þ ¼ ��a�c

�
fm�m
1;�¼0ð�Þ þ ~	Erfc

�
�c

�

ffiffiffi
a

2

r ��
; (17)

and the second order reads

fm�m
1;�ð2Þ ð�Þ ¼ �2a�c~	

�
a�cErfc

�
�c

�

ffiffiffi
a

2

r �

þ �

ffiffiffiffiffiffiffi
a

2�

r �
e�ða�2

cÞ=ð2�2Þ
�
1

2
� a�2

c

�2

�

þ 3

4

a�2
c

�2
�

�
0;
a�2

c

2�2

���
: (18)

For �=ð1þDBÞ< 1, corrections Oð>�2Þ are negligible
(see, e.g., Fig. 1); hence, Eqs. (9) and (16)–(18) give the
relevant contributions to the mass function.
In principle the values of � and DB as well as their

redshift and cosmology dependence can be predicted in a
given halo collapse model by computing the average and
variance of the probability distribution of the collapse
density threshold. However, this requires a dedicated study
which should also include environmental effects that have
been shown to play an important role in determining the

FIG. 1. Contributions to the halo mass function ftot (solid line)
for � ¼ 0:2 and DB ¼ 0:6. The different curves correspond to
the Markovian mass function f0 (dotted line), fm�m

1;�¼0 (short-

dashed line), fm�m
1;�ð1Þ (long-dashed line), fm�m

1;�ð2Þ (dot–short dashed

line), fm�m
1;�ð3Þ (dot–long dashed line).
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properties of the halo mass distribution [26]. This goes
beyond the scope of this Letter.

Here, we take a different approach. � and DB are
physical motivated model parameters which we can cali-
brate against N-body simulation data, and test whether the
mass function derived above provides an acceptable de-
scription of the data. To this purpose we use the measure-
ments of the halo mass function obtained by Tinker et al.
[6] using SOD(200) on a set of WMAP–1 yr and WMAP–
3 yr cosmological N-body simulations. For these cosmo-
logical models the spherical collapse predicts �c ¼ 1:673
at z ¼ 0 (for a detailed calculation see [8]). Using such a
value, we run a likelihood Markov chain Monte Carlo
analysis to confront the mass function previously com-
puted against the data at z ¼ 0. We find the best fit values
to be � ¼ 0:057 and Db ¼ 0:294. The data strongly con-
strain these parameters, with errors �� ¼ 0:001 and

�DB
¼ 0:001, respectively. In Fig. 2 (upper panel) we

plot the corresponding mass function (red dash line)
against the simulation data together with the four-
parameter fitting formula by Tinker et al. [6] for � ¼
200 (solid blue line). For comparison we also plot the
diffusive barrier case by Maggiore and Riotto [28] which
best fit the data with DB ¼ 0:235 (green dotted line). In
Fig. 2 (lower panel) we plot the relative differences with
respect to the Tinker et al. formula. We may notice the
remarkable agreement of the diffusive drifting barrier with
the data. Deviations with respect to Tinker et al. (2008) are
& 5% level over the range of masses probed by the simu-
lations. This is quite impressive given the fact that our

model depends only on two physically motivated
parameters.
In the upcoming years a variety of astrophysical obser-

vations will directly probe dn=dM. The halo mass function
we have derived here can provide the base for a through
cosmological model comparison. In a companion paper we
will describe in detail the derivation of these results, as
well as extensive discussion on the redshift evolution of the
mass function and halo bias.
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