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Attaining the ultimate (Holevo) limit to the classical capacity of a quantum channel requires the

receiver to make joint measurements over long code-word blocks. For a pure-state channel, we show that

the Holevo limit can be attained by a receiver that uses a multisymbol unitary transformation on the

quantum code word followed by separable projective measurements. We show a concatenated coding and

joint-detection architecture to approach the Holevo limit. We then construct some of the first concrete

examples of codes and structured joint-detection receivers for the lossy bosonic channel, which can

achieve fundamentally higher (superadditive) capacity than conventional receivers that detect each

modulation symbol individually. We thereby pave the way for research into codes and structured receivers

for reliable communication data rates approaching the Holevo limit.
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When the modulation alphabet of a communication
channel is comprised of quantum states, the Holevo limit
is an upper bound to the Shannon capacity of the physical
channel paired with any receiver measurement. Even
though the Holevo limit is an achievable capacity, the
receiver in general must make joint (collective) measure-
ments over long code-word blocks—measurements that
cannot in general be realized by detecting single modula-
tion symbols followed by classical postprocessing. This
phenomenon of a joint-detection receiver (JDR) being able
to yield higher capacity than any single-symbol receiver
measurement is often termed as superadditivity of ca-
pacity. The more recent usage of the term superadditivity
of capacity refers to a quantum channel being able to
achieve a higher classical communications rate by using
transmitted states that are entangled over multiple channel
uses [1,2]. For the point-to-point lossy bosonic channel, we
showed that entangled inputs at the transmitter cannot get a
higher capacity [3]. However, one can get a higher capacity
by using joint-detection measurements at the receiver
(as opposed to a symbol-by-symbol optical receiver). In
this Letter, we use the term superadditivity in this latter
context. This usage of the term was first adopted by Sasaki
et al. [4].

For the lossy bosonic channel (such as a free-space line-
of-sight optical link between a pair of transmit and receive
apertures), a coherent-state modulation suffices to attain
the Holevo capacity; i.e., nonclassical transmitted states do
not yield any additional capacity [3]. Hausladen et al.’s
square-root measurement [5], which in general is a positive
operator-valued measure (POVM), applied to a random
code gives us the mathematical construct of a receiver
that can achieve the Holevo limit. Lloyd, Giovannetti,
and Macconne [6] recently showed a receiver that can
attain the Holevo capacity of any quantum channel
by making a sequence of ‘‘yes-no’’ projective measure-
ments on a random code book. Sasaki et al. showed several

examples of superadditive capacity by using pure-state
alphabets and the square-root measurement [4]. However,
the key practical questions that remain unanswered are
how to design modulation formats, channel codes, and,
most importantly, structured optical realizations of
Holevo-capacity-approaching receivers.
In this Letter, we start by showing a simple result that

the Holevo limit of a pure-state channel is attained by a
projective measurement, which can be implemented by a
unitary operation on the quantum code word followed
by separable projective measurements on the single-
modulation-symbol subspaces. Thereafter we translate
this result into a concatenated coded receiver architec-
ture for the lossy bosonic channel. Finally, we show
concrete examples of codes and receivers pursuant to
this architecture, which yield superadditive capacity for
binary-phase-shift keying (BPSK) signaling at low pho-
ton numbers. These, we believe, are the first receiver
realizations that can exhibit superadditivity and can be
tested by using simple laboratory optics.
Attaining the Holevo limit of a pure-state channel.—We

encode classical information by using a Q-ary modulation
alphabet of nonorthogonal pure-state symbols in A �
fjc 1i; . . . ; jc Qig. Each channel use constitutes sending

one symbol. We assume that the channel preserves the
purity of A and, thus, take the states fjc qig to be those

at the receiver. The only source of noise is the physical
detection of the states. Assume that the receiver detects
each symbol one at a time. Channel capacity is given by the
maximum of the single-symbol mutual information

C1 ¼ max
fpig

max
f�̂ð1Þ

j g
I1ðfpig; f�̂ð1Þ

j gÞ bits=symbol; (1)

where the maximum is taken over priors fpig over the

alphabet and a set of POVM operators f�̂ð1Þ
j g, 1 � j � J,

on the single-symbol state space. The measurement of each

PRL 106, 240502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

0031-9007=11=106(24)=240502(4) 240502-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.106.240502


symbol produces one of J possible outcomes, with condi-

tional probabilities PðjjiÞ ¼ hc ij�̂ð1Þ
j jc ii, which define a

discrete memoryless channel. To achieve reliable commu-
nication on this channel at a rate close to C1, forward error
correction will be required. In other words, for any rate
R< C1, there exists a sequence of code books Cn with
K ¼ 2nR code words jcki, 1 � k � K, each code word
being an n-symbol tensor product of states in A, and a
decoding rule, such that the average probability of decod-

ing error (guessing the wrong code word) �PðnÞ
e ¼ 1� 1

K �
P

K
k¼1 Prðk̂ ¼ kÞ ! 0, as n ! 1. In this ‘‘Shannon’’ set-

ting, optimal decoding is a maximum likelihood (ML)
decision, which can in principle be precomputed as a
long table lookup (see Fig. 1), although a low-complexity
channel decoder is desirable in any practical setting. Let
us define Cn as the maximum capacity achievable (in bits
per symbol) with measurements that jointly detect up
to n symbols. The fact that joint detection allows for
ðnþmÞCnþm > nCn þmCm (or Cn > C1) is referred to
as superadditivity of capacity. The Holevo-Schumacher-
Westmorland theorem says

C1 � lim
n!1Cn ¼ max

fpig
S

�X

i

pijc iihc ij
�
; (2)

the Holevo bound, is the ultimate capacity limit, where
Sð�̂Þ ¼ �Tr�̂log2�̂ is the von Neumann entropy, and that
C1 is achievable with joint detection over long code-word
blocks. Calculating C1, however, does not require the
knowledge of the optimal receiver measurement. In other
words, if we replaced the detection and demodulation
stages in Fig. 1(a) by one giant quantum measurement,
then for any rate R< C1, there exists a sequence of code
books Cn with K ¼ 2nR code words jcki, 1 � k � K, and
an n-input n-output POVM over the n-symbol state space

f�̂ðnÞ
k g, 1 � k � K, such that the average probability of

decoding error �PðnÞ
e ¼ 1� 1

K

P
K
k¼1hckj�̂ðnÞ

k jcki ! 0, as

n ! 1.
Theorem 1.—For a pure-state channel, a projective mea-

surement can attain C1 and can be implemented as a
unitary transformation on the code word followed by a
parallel set of separable single-symbol measurements.
Proof.—The minimum probability of error (MPE) mea-

surement for discriminating a set of pure-state code words
is a projective measurement [7], which by definition
obtains a lower probability of decoding error than the
square-root measurement. Since the latter is known to be
capacity-achieving for a large random code [5], the MPE
measurement must also be so. Finally, it is straightforward
to show that any projective measurement on the n-symbol
state space can be implemented by a unitary transformation
on the n-symbol code word (a tensor-product pure state)
followed by a sequence of separable projective measure-
ments on each symbol. j
The Dolinar receiver [8] implements a binary projective

MPE measurement to optimally distinguish two nonor-
thogonal coherent states. Therefore a capacity-achieving
receiver for a binary coherent-state channel could be im-
plemented as a unitary rotation of an n-symbol code word
followed by a sequence of Dolinar receivers [Fig. 1(a)],
which is in general a joint measurement. Despite the result
of Theorem 1, finding optimal codes and low-complexity
JDRs is difficult. It is common wisdom in classical coding
theory that concatenated codes can approach Shannon
capacity while requiring extremely low-complexity de-
coders, at the expense of a lower error exponent [i.e.,
longer code-word lengths (n) needed to attain a given
�PðnÞ
e , as compared to a single optimal code and the ML

decoder] [9]. We propose a similar concatenated coding
architecture—shown in Fig. 1(b)—to approach the quan-
tum channel’s Holevo capacity, where the JDR acts on the
inner code to attain a superadditive Shannon capacity
Cn > C1, and the outer code (e.g., a Reed Solomon code)
drives down the error rates to attain reliable communica-
tions at the capacity Cn of the inner ‘‘superchannel’’ [see
Fig. 1(b)]. The remainder of this Letter will present two
practical constructions of such superchannels that yield
superadditive capacity.

FIG. 1 (color online). (a) Classical communication system,
shown here for a BPSK alphabet. If the receiver uses symbol-
by-symbol detection, maximum capacity ¼ C1 bits=symbol. If
the detectionþ demodulation block is replaced by a general
n-symbol joint quantum measurement, maximum capacity ¼
Cn bits=symbol. Superadditivity: C1 >Cn > C1, where C1 is
the Holevo limit. The joint-detection structure shown achieves
the Holevo limit for a coherent-state BPSK modulation. (b) Our
proposed modification of the classical concatenated coding
architecture [9], in which the channel is broken up into the
physical channel and a receiver measurement, with the joint-
detection receiver acting on the inner code.
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Superadditive optical receivers.—Consider a single-
mode lossy bosonic channel, where data are modulated
by using a succession of pulses (orthogonal temporal
modes) with mean received photon number �n per mode,
where each pulse carries one modulation symbol. The
Holevo capacity Cultð �nÞ ¼ gð �nÞ ¼ ð1þ �nÞlog2ð1þ �nÞ �
�nlog2 �n bits=symbol, which is attained by using a
coherent-state modulation [3]. Since pure loss preserves
coherent states (with linear amplitude attenuation), it suf-
fices to define capacity as a function of the mean photon
number per received mode �n, and the pure-state channel
discussion above applies. At high �n, symbol-by-symbol
heterodyne detection asymptotically achieves the Holevo
limit. The low photon number regime is more interesting,
where the joint-detection gain is the most pronounced.

In Fig. 2, we show the photon information efficiency
(PIE), the number of bits that can be reliably decoded per
received photon, as a function of �n [10]. There is no
fundamental upper bound to the PIE; however, higher PIE
necessitates lower �n. Furthermore, binary modulation and
coding is sufficient to meet the Holevo limit at low �n.
Specifically, the BPSK alphabet A1 � fj�i; j � �ig,
j�j2 ¼ �n, is the Holevo-optimal binary modulation at
�n � 1. The Dolinar receiver realizes the binary MPE mea-
surement on any pair of coherent states by using single-
photon detection and coherent optical feedback [8]. If the
Dolinar receiver is used to detect each symbol, the BPSK
channel is reduced to a classical binary symmetric channel
with capacity C1 ¼ 1�HðqÞ bits=symbol, where Hð�Þ is
the binary Shannon entropy and q ¼ ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�4 �n

p
�=2 is

the minimum mean probability of error to discriminate
fj�i; j � �ig. This is the maximum achievable capacity
when the receiver detects each symbol individually, which
includes all conventional (direct-detection and coherent-
detection) receivers. The PIE C1ð �nÞ= �n caps out at 2= ln2 �
2:89 bits=photon at �n � 1. Closed-form expressions and

scaling behavior of Cn, the maximum capacity achievable
with measurements that jointly detect up to n symbols, for
n 	 2 are not known. However, the Holevo limit of BPSK,
C1ð �nÞ ¼ Hð½1þ e�2 �n�=2Þ, can be calculated easily by us-
ing Eq. (2). Good codes and JDRs would be needed to
bridge the huge gap between the PIEs C1ð �nÞ= �n and
C1ð �nÞ= �n, shown in Fig. 2. It is interesting to reflect on
the point shown by the orange circle (at 10 bits=photon) in
Fig. 2, which says that, for a 1:55 �m far-field free-space
optical link operating at 1 GHz modulation bandwidth,
the laws of physics permit reliable communication at
0.266 Gbps with only 3.4 pW of average (and peak) re-
ceived optical power.
A two-symbol superadditive JDR.—Some examples of

superadditive codes and joint measurements have been
reported [4,11] but not with structured receiver designs.
An ensemble [a ð2; 3; 1Þ inner code [12]] containing three
of the four 2-symbol BPSK states, A2 � fj�ij�i; j�ij �
�i; j � �ij�ig, with priors ð1� 2p; p; pÞ, 0 � p � 0:5,
can attain, with the best 3-element projective measurement
in spanðA2Þ, up to � 2:8% higher capacity that C1 [11].
Since this is a Shannon capacity result, a classical outer
code with code words comprising of sequences of states
from A2 will be needed to achieve this capacity I2 >C1.
By using the MPE measurement on A2 (which can be
analytically calculated [7], unlike the numerically opti-
mized projections in [11]), I2=C1 � 1:0266 can be ob-
tained. We have found the first structured receiver that
attains superadditivity. It involves a unitary operation on
the ð2; 3; 1Þ code (a beam splitter) followed by separable
single-symbol measurements [in this case, a single-photon
detector (SPD), and a Dolinar receiver] (see Fig. 3) and can
attain I2=C1 � 1:0249 (see Fig. 2). It is likely that none of
these projective measurements on A2 attain C2, since the
single-shot measurement that maximizes the accessible
information in A2 could in general be a 6-element
POVM [13].
An n-symbol superadditive JDR.—A ð2m � 1; 2m; 2m�1Þ

BPSK Hadamard code with �n-mean-photons BPSK
symbols is unitarily equivalent to the ð2m; 2m; 2m�1Þ
pulse-position-modulation (PPM) code with 2m �n-mean-
photon-number pulses. The former is slightly more
space-efficient, since it achieves the same equidistant dis-
tance profile, but with one less symbol. Consider a BPSK
Hadamard code detected by a 2m-mode unitary transfor-
mation (with one ancilla mode, prepared locally at the

FIG. 2 (color online). Photon information efficiency (bits
per received photon) as a function of mean photon number per
mode, �n.

FIG. 3 (color online). A two-symbol JDR that attains � 2:5%
higher capacity for BPSK than the best single-symbol (Dolinar)
receiver.
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receiver, in the j�i state) built by using ðnlog2nÞ=2 50-50
beam splitters arranged in the ‘‘Green machine’’ format,
followed by a separable n ¼ 2m-element SPD array, as
shown (for n ¼ 8) in Fig. 4. The beam splitters unravel
the BPSK code book into a PPM code book, collecting the
photons into spatially separated bins. The ancilla mode
necessitates a local oscillator phase locked to the received
pulses, which is hard to implement. But we can append the
ancilla mode to the transmitted code word, so that the
received ancilla can serve as a pilot tone for our interfero-
metric receiver. The Shannon capacity of this code-JDR
superchannel—allowing for outer coding over the erasure
outcome (i.e., no clicks registered by any detector)—is
Inð �nÞ ¼ ðlog2K=KÞ½1� expð�2d �nÞ� bits=symbol, where
d ¼ 2m�1. In Fig. 2, we plot the envelope maxnInð �nÞ= �n
(the green dotted plot) as a function of �n. This JDR not only
attains a much higher superadditive gain than the n ¼ 2
case we described above, it does not need phase tracking
and coherent optical feedback like the Dolinar receiver. In
Fig. 4(b), we plot the bit error rates PbðEÞ as a function of �n
for uncoded BPSK, and for the ð255; 256; 128Þ BPSK
Hadamard code, when detected by using both a symbol-
by-symbol Dolinar receiver and our structured JDR, re-
spectively. The coding gain now has two components, a
(classical) coding gain and an additional joint-detection
gain. In Ref. [14], we show a more involved JDR construc-
tion for the first-order Reed Muller codes, which attains
higher superadditive capacity.

A great deal is known about binary codes that achieve
low bit error rates on the binary symmetric channel at �n
very close to the Shannon limit [9]. It would be useful to
design codes with symmetries that allow them to approach
Holevo capacity, with the unitary U of the inner code’s
JDR in Fig. 1(a) realizable via a simple network of beam
splitters, phase shifters, two-mode squeezers, and Kerr
nonlinearities (which form a universal set for realizing an
arbitrary multimode bosonic unitary [15]) along with a
low-complexity outer code. The fields of information and
coding theory have had a unique history. Even though
many of its ultimate limits were determined in Shannon’s
founding paper [16], it took generations of magnificent
coding theory research to ultimately find practical
capacity-approaching codes. Even though realizing high-
photon-efficiency communication on an optical channel
close to the Holevo limit might take a while, it certainly
does seem to be on the visible horizon.
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FIG. 4 (color online). (a) The BPSK ð7; 8; 4Þ Hadamard code is
unitarily equivalent to the ð8; 8; 4Þ PPM code via a Green
machine built by using 12 50-50 beam splitters. (b) Bit error
rate plotted as a function of �n. The plot marked ‘‘?’’ is not the bit
error rate for any known code-receiver pair; we just know that
codes and physical joint-detection receivers that approach the
Holevo limit must exist.

PRL 106, 240502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

240502-4

http://dx.doi.org/10.1038/nphys1224
http://dx.doi.org/10.1103/PhysRevLett.102.110505
http://dx.doi.org/10.1103/PhysRevLett.102.110505
http://dx.doi.org/10.1103/PhysRevLett.92.027902
http://dx.doi.org/10.1103/PhysRevLett.92.027902
http://dx.doi.org/10.1103/PhysRevA.58.146
http://dx.doi.org/10.1103/PhysRevA.58.146
http://dx.doi.org/10.1103/PhysRevA.54.1869
http://arXiv.org/abs/1012.0106v1
http://dspace.mit.edu/handle/1721.1/27472
http://dspace.mit.edu/handle/1721.1/27472
http://dx.doi.org/10.1103/PhysRevA.61.032309
http://dx.doi.org/10.1103/PhysRevA.61.032309
http://arXiv.org/abs/quant-ph/0206058
http://arXiv.org/abs/1102.1963v1
http://arXiv.org/abs/1010.0326v1

