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We present a systematic multiscale reduction of a biologically plausible model of the inhibitory

neuronal network of the pheromone system of the moth. Starting from a Hodgkin-Huxley conductance

based model we adiabatically eliminate fast variables and quantitatively reduce the model to mean field

equations. We then prove analytically that the network’s ability to operate on signal amplitudes across

several orders of magnitude is optimal when a disinhibitory mode is close to losing stability and the

network dynamics are close to bifurcation. This has the potential to extend the idea that optimal dynamic

range in the brain arises as a critical phenomenon of phase transitions in excitable media to brain regions

that are dominated by inhibition or have slow dynamics.

DOI: 10.1103/PhysRevLett.106.238109 PACS numbers: 87.19.lj, 87.19.ll

The extraordinary ability of brains to operate on sensory
signal amplitudes across several orders of magnitude has
been well established by psychophysicists [1] and behav-
ioral biologists [2] alike, but the underlying mechanisms
are still not fully understood. One key model system to
understand the origin of this dynamic range (DR) is the
pheromone system in the antennal lobe (AL) of male moths
that allows them to find females from more than a mile
away [3]. Given the limitations of individual neurons
within the AL [4] it is likely that a significant contribution
to the DR arises from their collective properties and grow-
ing evidence indicates that biological systems like the AL
may exploit self-organized criticality [5,6]. It has been
demonstrated in a series of works, e.g., [7], that dynamics
close to a phase transition can underlie large DR in excit-
able media and Kinouchi et al. [8] subsequently suggested
that this result extends to the gap junction coupled neurons
in the olfactory bulb (OB), the vertebrate equivalent of
the AL. However, gap junctions have not been found in
the AL, the dynamics are dominated by slow inhibitory
(GABAB) synapses and, perhaps most importantly, record-
ings from the AL are not consistent with excitable dynam-
ics. Here we use the olfactory system as a test case and
develop a framework for describing a critical point in a
nonexcitable network inspired by the ideas of [9]. We
analytically reduce a biologically plausible conductance
based model of the macroglomerular complex (MGC), the
pheromone subsystem of the AL, by adiabatically elimi-
nating fast variables and then construct mean field (MF)
equations. We demonstrate how a disinhibitory mode in the
recurrent network of inhibitory local neurons (LNs) can
mediate signal transmission from the olfactory receptor
neurons (ORNs) to the intrinsically active projection neu-
rons (PNs) and show analytically how sensitivity and DR
are maximized when this disinhibitory mode is close to
losing stability and the network is close to bifurcation.

Conductance based model.—We model the MGC as a
network of N Hodgkin-Huxley (HH) neurons interacting

through a random inhibitory coupling matrix �Ĝ � �ĝij
where ĝij 2 f1; 0g with probability P and 1� P, respec-

tively. The membrane potential of neurons is given by

C _Vi ¼ �INa � IK � IL � IM � Ii;DC � Ii;syn � Ii; (1)

where Ii is an external current and Ii;DC a constant bias. The
leak current is IL ¼ gLðVi � ELÞ and the ionic currents INa
and IK are described by standard HH equations [10], as in
[11]. IM is a spike-frequency adaptation current, charac-
terized by the slow gating variable zi with _zi ¼ ½HðViÞ �
zi�=�z, and HðViÞ ¼ 0:01=f1þ exp½�ðVi þ 20Þ=5�g.
The remaining parameter values are C ¼ 0:143 nF, gL ¼
0:02672 �S, EL ¼ �63:563 mV, gNa ¼ 7:15 �S, ENa ¼
50 mV, gK ¼ 1:43 �S, EK ¼ �95 mV, and �z ¼ 50 ms.
Neurons are connected by first order synapses [12] with
a fast rise (� ¼ 1 kHz) and slow decay (� ¼ 0:01 kHz)
of neurotransmitter si in response to spiking events, see
Fig. 1(b),

_si ¼ ��si þ ��ðt� tsÞ�ðts þ tr � tÞ; (2)

where ts is the last time the membrane potential exceeded
the threshold Vth,� is the Heaviside function, and tr is the
duration of transmitter release. The synaptic current onto
neuron i is then given by

Ii;syn ¼
X
j

� ĝijsjðVi � VrevÞ; (3)

where Vi denotes the potential of the ith neuron, Vrev ¼
�90 mV, tr ¼ 1 ms, and Vth ¼ 20 mV.
Reduction to a rate model.—Given that the synapses are

relatively slow compared to the membrane dynamics (i.e.,
� is sufficiently small) we can adiabatically eliminate the
latter from the network description. To do so, we start by
constructing a mapping between a static input current
and the steady state firing frequency F of the neuron (F-I
curve). Without spike-frequency adaptation (gm ¼ 0) the
neurons exhibit type 1 excitability (i.e., spiking onsets
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through a saddle-node bifurcation on a limit cycle) and the
F-I curve is well fit by a square root function which has an
infinite derivative at spiking onset, see Fig. 1(a). Spike-
frequency adaptation (gm > 0) can effectively linearize the
F-I curve [13], FðIÞ ¼ ½mI þ C�þ, see Fig. 1(a), where
½x�þ � maxfx; 0g andm and C are determined numerically
by a linear fit to the F-I curve. We can view the response
of the synapse to a constant input frequency as the leaky
integration of a square wave of transmitter activation and
can construct a smooth approximation to (2) as

_s i ¼ ��si þ �trF: (4)

The approximation works best with high input frequencies
or low � [Fig. 1(b)]. Summing across many synapses,
assuming randomly distributed phases, further improves
the approximation [Fig. 1(b), middle line]. Combining
(3) and (4) we obtain

_s ¼ ��sþ �½� ~Gsþ � þ I�; (5)

where �ðxÞ ¼ �c½x�þ, �c ¼ �mtr and � � �i � Ii;DC þ C
which has absorbed the constant offset, C, from the F-I
curve. Except during a spike the membrane potential of
each neuron is close to its resting potential V�

i;rest which we

calculated numerically in the baseline state of the network.
We then approximate the synaptic input to each neuron as
~G � ~gij ¼ ĝijðV�

i;rest � VrevÞ. The rate of neuron i will then
be given by Fi ¼ m½� ~Gsþ � þ I�þ.

Globally stable dynamics.—In the absence of stimulation
the baseline frequencies of the LNs are distributed between
15 and 40 Hz. Pheromone stimulation induces transient rate
oscillations with periods on the order of 102 ms [4]. To
model these phenomena we construct a system with glob-
ally stable rate dynamics. The local stability around a fixed
point (FP) s� ¼ s�1; . . . ; s�N is determined by the eigenvalues

of the Jacobian J ¼ ��c
~G� �1. The network dynamics

are locally stable if [14]

�maxð��cGÞ<�: (6)

We therefore can control the stability of the system by

scaling the weights as G¼� ~G where �¼ p��

�maxð�c
~GÞ. p��0

is a stability parameter, i.e., the FP is stable if p� < 1.
In order to obtain appropriate baseline frequencies

2 ½Fmin; Fmax� we choose s�i 2 ½s�min; s
�
max� with s�min ¼

�Fmin

�tr
, s�min ¼ �Fmax

�tr
, see (4), and, setting dsi

dt ¼ 0, 8i and

I � 0 in (5), we get the necessary biases

� ¼ ��1ð�s�Þ þGs�: (7)

The local stability determined by p� is only necessary but
not sufficient for global stability. However, like [15] we find
that locally stable networks are almost always globally
stable and use (6) as a practically sufficient condition
for global stability. Figure 2 shows example traces from
a stable network (p� < 1) with baseline frequencies 2
½15; 40� Hz. When the FP is unstable (p� > 1) the system
exhibits oscillations (perhaps chaos) or saturating dynamics
depending on the connectivity matrix.
A disinhibitory pathway.—Odor stimulation of ORNs

increases the firing rate of PNs. While evidence of direct
excitatory connections from ORNs to PNs exists [16],
other evidence suggests that a significant part of the PN
excitation arises from LNs through a disinhibitory pathway
[2]. Here we describe how such a pathway, in which the
suppression of some LNs releases intrinsically active PNs
from inhibition, could arise in a random recurrent network
of inhibitory neurons. We describe the MGC in terms of a
set of Nþ stimulated (LNs that receive input from ORNs)
si, 1 � i � Nþ and N� unstimulated LNs si, Nþ < i � N,
i.e., Ii ¼ I for i ¼ 1; . . . ; Nþ and Ii ¼ 0 otherwise. We
assume that stimulated LNs do not synapse on PNs and
hence quantify the disinhibition of the PNs in terms of the
suppression of activity of unstimulated LNs, see Fig. 4(b)
(inset). This scenario is described by (5) where ~gij is a

random matrix with entries ~gij 2 f0; 1g if i, j � Nþ or i,

j > Nþ (intraconnections) and ~gij 2 f0; 	g otherwise

(interconnections). The parameter 	 scales the ratio

between the intra- and interpopulation connectivities. ~G
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FIG. 2. The dynamics of three neurons from a network with
Nþ ¼ 5, N� ¼ 15, P ¼ 0:5, and p� ¼ 0:9 in response to a
current pulse of I ¼ 1 nA (gray bar). (a) active transmitter
concentration si in the full model (solid) and the approximation
(dashed), (b) spike density function (solid) and the rate approxi-
mation (dashed).
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FIG. 1. (a) F-I curve for a HH neuron with (lower points) and
without (upper points) spike-frequency adaptation and the cor-
responding functional fits (lines). Inset: details of the curve at
onset. (b) Growth of si in response to spike input frequencies of
50 Hz (top) and 15 Hz (bottom). The middle traces show a sum
of 30 synapses with input frequencies 2 ½15; 40� Hz. Dashed
lines are smooth approximations according to (4).
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is scaled with � for some p� and the biases �i are set with
(7) such that the frequencies are 2 ½15; 40� Hz. When the
network coupling is moderate, stimulation causes a net
decrease in the activity of the unstimulated LNs and hence
a net disinhibition of PNs. We can see this by linearizing
(5) around the FP to find, using (7),

� � ¼ �c

�

�
1þ �c

�
G

��1
I; (8)

where we have set 
�
i � s�i � s�ð0Þi , the displacement of the

FP s�i with input current I, from the FP s�ð0Þi without input
(I � 0). For a weakly coupled system, �> �ckGk (where
k � k is an appropriate matrix norm), we can expand
the right-hand side to obtain �� � �c

� ½1� �c

2� ðGþGTÞ þ
OðkGk2Þ�I and hence find the FP of the LN populations as


þ�
i � I

�c

�
� I

�2
c

2�2

�XNþ

j¼1

½gij þ gji�
�


��
i � �I

�2
c

2�2

�XNþ

j¼1

½gij þ gji�
�
:

(9)

Hence the stimulated LNs will increase in activation and
the unstimulated LNs will decrease.

In a strongly coupled system we can analyze the network
response by eigendecomposition of the bracket in (8),
which is the Jacobian J of the system. Decomposing it as
J ¼ Q�Q�1 we find �� ¼ ��c½Q��1Q�1�I where Q is
the matrix of eigenvectors and � is the diagonal matrix
of eigenvalues of J. As p� ! 1, the real part of one
eigenvalue, the critical eigenvalue �c, will approach 0.
Therefore, the displacement of the FP with input is domi-
nated by the corresponding mode which is not necessarily
in the direction of the disinhibitory pathway. However, this
critical mode becomes aligned with the disinhibitory path-
way if the ratio between the intra- and interconnection
weights is 	 > 1, see Fig. 4(b), which is not an unreason-
able assumption as the connections in the MGC are thought
to be genetically specified.

Mean field approximation.—We consider (5) for the
stimulated sþi and unstimulated populations s�i . For suffi-
ciently large Nþ, N� one can approximate

P
gijs

þ
j �

P�Nþhsþi i (and similarly for all other terms) and average
over all neurons i to obtain

_
þ¼��
þþ�½��PðfNþ�1g
þþ	N�
�ÞþI�
_
�¼��
�þ�½��Pð	Nþ
þþfN��1g
�Þ�; (10)

where 
þ ¼ hsþi � sþ�ð0Þ
i i, and similarly for 
�, are the

average displacements of the variables from the FP value

sþ�ð0Þ
i in the absence of input. We have also replaced �i
using (7). The function �ðuÞ describes how the average
response of the network changes as more unstimulated
nodes are driven into silence; using [17] we find �½u� ¼
�cu for u � a, �½u� ¼ �c

ðb�aÞ ðbuþ u2þb2

2 Þ � �sþ�ð0Þ for

a > u � b and �½u� ¼ ��sþ�ð0Þ otherwise. Here, a ¼
� �sþ�

min

� and b ¼ � �sþ�
max

� depend on the distribution of si at

the FP. Phase plane analysis reveals that this system under-
goes a supercritical pitchfork bifurcation as the FP be-
comes unstable. Note that the bifurcation results from the
competition between inhibitory populations rather than
from a transition to self-sustained activity described in
excitable media, e.g., [7] and that, therefore, the total
activity decreases when approaching the critical point
from below.
Dynamic range and sensitivity.—To quantify the re-

sponse of this network we define the DR as � ¼
10 logðImax

Imin
Þ (measured in dB), where Imin is the input lead-

ing to a response of 0:05
1, Imax to 0:95
1 and 
1 is the
deviation from the FP for infinite input, Fig. 4(a) (inset).
The response of the unstimulated nodes exhibits maximal
DR as the network approaches bifurcation. In a sample of
20 conductance based model networks both the moderately
coupled system (p� ¼ 0:5) and a purely feedforward sys-
tem had mean DR 10	 6 dB. A system close to bifurca-
tion (p� ¼ 0:995) had DR of about 22	 6 dB (Fig. 3).
When p� > 1 the system is displaced from the now un-
stable FP, even in absence of input, and the magnitude of
the response and the DR are smaller.
While the rate approximation quantitatively captures the

dynamics for p� < 0:9 (Figs. 2 and 3) deviations of
the approximation from the full model become magni-
fied as the system approaches bifurcation (p� ! 1).
Consequently, we cannot accurately calculate the critical
weight strengths using the approximation and the
prediction of the location of the FP diverges as p� ! 1,
potentially before we can exploit the dynamical divergence
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FIG. 3. Average reduction of frequency of the unstimulated
population (LN�) in response to 2s of noisy input (mean I, std

 ¼ 0:01 nA). Left: asymptotic equilibrium of the mean field
approximation for p� ¼ 1:1 (supercritical) (dotted), 0.995
(solid), 0.5 (dashed), and without feedback (dot-dashed).
Right: Rate model for p� ¼ 1:1 (supercritical) (dotted), p� ¼
0:995 (solid) and 0.5 (dashed) and without feedback (dot-dashed)
and data from the full conductance model for p� ¼ 0:5
(squares), without feedback (circles) and close to critical (tri-
angles). Note that the asymptotic and the numerically observed
dynamic range differ because the system does not reach the fixed
point in finite time.
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we are interested in. We can overcome these limitations by
numerically approaching the critical point in the conduc-
tance based model while concurrently up-regulating the
firing frequency of neurons that fall below 75% of their
target firing frequencies (triangles in Fig. 3).

To understand the sensitivity of the system further we
can analytically calculate the asymptotic gain of the net-
work in the MF description. Using the nullclines of (10) we

find the gain d
��
dI ¼ �2

c�P	Nþ
�1�2

, where �i are the eigenvalues

of the Jacobian of (10) at the FP. As we scale the system to
the bifurcation, �1 approaches zero and the gain of the
system diverges. In contrast, the gain without feedback,
d
��
dI ¼ � �2

c�P	Nþ
�2 , does not diverge. It is straightforward to

construct an analytical expression for the DR from the
nullclines of (10). The DR peaks at the critical point
[Fig. 4(a)]. The DR estimation is less reliable for p� > 1
because the system often is oscillatory and the response to
input is quite weak and irregular.

Discussion.—We have shown how the DR, mediated by
a single disinhibitory mode, is maximized when the system
is close to bifurcation. This result is largely independent of
the model details and could straightforwardly be extended
to dominant modes in networks containing both excitatory
and inhibitory neurons. This suggests an idea of criticality
in neural systems that differs from the more common
statistical description and, at the network level, is more
related to the work of [18], or, at the cellular level, to work
on the vertebrate cochlea [19,20]. The bifurcation in an
inhibitory network we investigated here is qualitatively
different to the phase transitions to self-sustained activity
examined in excitable media and our model makes the
prediction that neural substrates could be taken into a
supercritical state (p� > 1) by increasing inhibition rather
than increasing excitation [21].
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