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The Pfaffian phase in the proximity of a half-filled Landau level is understood to be a pþ ip

superconductor of composite fermions. We consider the properties of this paired quantum Hall phase

when the pairing energy is small, i.e., in the weak-coupling, BCS limit, where the coherence length is

much larger than the charge screening length. We find that, as in a type I superconductor, vortices attract

so that, upon varying the magnetic field from its magic value at � ¼ 5=2, the system exhibits Coulomb

frustrated phase separation. We propose that the weakly and strongly coupled Pfaffians exemplify a

general dichotomy between type I and type II quantum Hall fluids.
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There is a deep and precise relation between supercon-
ductivity and the quantum Hall effect, which can be for-
mally implemented by replacing the physical Maxwell
gauge field by the statistical Chern-Simons gauge field
[1–3]. The perfect conductivity of the superconductor
then corresponds to the quantization of the Hall conduc-
tance, the Meissner effect to incompressibility, and quan-
tized vortices to fractionally charged quasiparticles. In
some cases, this relation goes further, in that the Hall fluid
is a condensate of fermion pairs. Specifically, the quantized
Hall phase seen in the proximity of the half-filled second
Landau level, � ¼ 5=2, is likely associated with the
Pfaffian or Moore-Read state [4]. The ideal Pfaffian state
has a natural interpretation as a weakly paired state of
composite fermions [5,6] with pþ ip symmetry, i.e., it
bears an analogous relationship to the metallic ‘‘composite
Fermi liquid’’ state of the half-filled Landau level [7] as the
corresponding BCS state does to an ordinary metal.

In this Letter we explore an important and hitherto little-
studied aspect of the quantum Hall–superconductor rela-
tionship, particularly relevant to the Pfaffian phase,
namely, that quantum Hall states, like superconductors,
generically exhibit two length scales: a screening length
� that characterizes the decay of density deviations and a
coherence length � [8] that characterizes variations of the
superfluid order. Further, the ratio of these scales crucially
influences the structure of vortices and then the response of
the ideal quantum Hall states to global density changes
much as they influence the response of superconductors to
applied magnetic fields.

Accordingly, we propose that quantum Hall fluids
should come in two classes: (a) type II quantum Hall fluids
where (roughly) � � � and density deviations are accom-
modated by the introduction of single quasiparticles
(vortices) and (b) type I quantum Hall fluids where
� < � and quasiparticles are unstable to agglomeration and
form multiparticle bound states or if the interactions

are sufficiently short-ranged, phase separate entirely.
Intuitively, type I behavior arises at � � � as two vortices
of size � are able to reduce their joint energy by an amount
of order of their individual creation energies Ev � ð�Þ0 by
merging and thus reducing the region over which the order
parameter is suppressed while only paying an interaction
energy which is parametrically smaller, e.g., a Coulombic
cost of order e2=�.
Examples of type II QH liquids abound—indeed, it has

been implicitly assumed that all QH fluids are of that kind
and that they exhibit a single length scale, which ultimately

is the magnetic length (‘B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
). In this Letter

we will present and analyze a first example of a type I
QH liquid.
This liquid is the weak-coupling limit of the Pfaffian

state. On general grounds, the identification of the Pfaffian
phase as a paired state of composite fermions carries with it
a natural presumption that the pairing strength is tunable
and that, in particular, it is possible to reach a weak-
coupling regime where, as in BCS superconductors, � is
parametrically larger than the zero-temperature charge
screening length, �ðT ¼ 0Þ � ‘B [9]. Indeed, numerical
studies suggest that such a weak-coupling regime does
exist for suitable microscopic interactions [10,11]. In the
balance of this Letter we analyze the properties of
the weakly coupled Pfaffian and show that instead of the
various quasiparticle (vortex) glass or crystal phases
typically invoked for the quantum Hall plateaux, it exhibits
patterns of charge organization associated with frustrated
phase separation.
Landau-Ginzburg theory.—For concreteness, we begin

with a half-filled Landau level of spinless electrons. In the
fermionic Chern-Simons (CS) approach [12], two quanta
of statistical flux are bound to each electron so that if we
treat the CS gauge field at mean-field level, exactly at � ¼
5=2 the electrons form a Fermi sea of composite fermions
(CFs) in zero net field [7]. Following previous studies [13],
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we add an explicit p-wave attraction between the CFs
(which in a more complete treatment should properly be
derived by integrating out high energy degrees of freedom
in some fashion [14]). At T ¼ 0, a further BCS mean-field
decoupling of this attraction produces a pþ ip supercon-
ducting state with coherence length � and a gap to creating
Bogoliubov quasiparticles � ¼ @vF=�. Because of the CS
electrodynamics of the statistical gauge field, vortices
carry charge e=4 which, as we will see shortly, is localized
on a length scale �, which plays the role of the London
penetration depth in superconductors. The Bogoliubov
quasiparticles are neutral fermionic excitations of the
quantum Hall fluid [4,15–17].

For weak attraction, � � �F or equivalently � � �
[18]. Moreover, in this limit, the vortex creation energy,
Ev � �. (A standard estimate—which we will improve
below—yields Ev � �F.) Thus, for weak coupling there
exists a finite temperature regime where vortices are

sparse, nv � e�Ev=T and can be neglected on length scales

� ‘Be
þEv=2T . There is a well-defined crossover tempera-

ture TMF
c � �=2 corresponding to the mean-field transi-

tion, at which significant pairing onsets.
Near TMF

c , one can derive a Landau-Ginzburg descrip-
tion from the fermionic CS path integral by integrating out
the fermions in favor of a complex order parameter� [19].
In units in which j�j ¼ 1 in the uniform Pfaffian phase,
and the condensation energy density is �0=�

2 (where
�0 � �F), this takes the form

FLG

�0
¼

Z
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���������
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� a

�
�

��������
2þ 1
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Z
dr

e

8�
A0;ext½r� a�: (1)

Here, the first term is the usual expression for the energy of
the condensed phase in powers of �. In the second term,
which is formally equivalent to a Maxwell term, �2 is
largely proportional to the inverse compressibility of the
CF metal. The gauge field aðrÞ � 8�

� ðaðrÞ þAextÞ is the

sum of the Chern-Simons and external gauge fields, which
satisfy r� a ¼ ��ðrÞ, r�Aext ¼ ���Pf ¼ B, respec-
tively, where ��1 ¼ e=2hc is the Chern-Simons coupling,
and �Pf is the density of the half-filled Landau level of the
ideal Pfaffian state. The third term, which has no direct
analogue in the theory of superconductivity, is the

Coulomb interaction, with �� ¼ ��� �Pf the difference
between the density set by the positive background and
the commensurate density. We have introduced an
exponent x which takes value x ¼ 1 when the Coulomb
interaction is unscreened, but can take the value x ¼ 3
(corresponding to dipolar interactions) when there is a

metallic gate present. (For x ¼ 1, �C � e2=�F, while for
the dipolar case, �3

C � e2d2=�F where d is the distance to

the metallic gate.) The final term ensures that the uniform
superconducting (Pfaffian) state has the correct Hall re-
sponse. � and � represent the Landau-Ginzburg coherence
length and penetration depth of the CS superconductor.
Two comments are in order. First, the formal derivation

of the Landau-Ginzburg theory is valid only near TMF
c and

at lower temperatures nonlocal ‘‘Pippard’’ effects will need
to be included as is the case for type I superconductors
[20]. However, for a first pass at the problem, we will
ignore the subtleties involved and use the Landau-
Ginzburg theory down to T ¼ 0 with its parameters con-
sidered to be phenomenological constants. Second, as FLG

is formally obtained by integrating out the composite
fermions, the full partition function would be obtained by
performing a further path-integral over the Hubbard
Stratonovich field, �, and the CS gauge field, a. For
present purposes, we will treat this problem in saddle-point
approximation, where we focus on the configuration of �
and a which minimizes FLG. This will be adequate for the
purposes of understanding vortex structure and interaction
which is our focus in the remaining.
Vortex structure.—We turn now to the vortices. First, let

us consider the structure of the vortices in the absence of a
long ranged interaction, (�C ¼ 0). Now FLG has exactly
the form of the conventional free energy of a superconduc-
tor, with screening length �. In the extreme type I limit,
� � �, the vortex has a core with magnetic flux spread
roughly over a region of size �while the order parameter is
suppressed over a much larger region of size �. Translated
into quantum Hall language, the charge density of the
quasiparticle is confined primarily to a region of size �
which is much smaller than the region over which the
Pfaffian order is disrupted.
This structure can be captured by a simple variational

ansatz (for a vortex of vorticity N) with a single parameter,
L, that has been shown [22] to be accurate in the limit
�=� ! 1:

�ðrÞ ¼ eiN	

�

ðr=LÞN for r < L
1� 
0K0ð

ffiffiffi
2

p
r=�Þ for r > L

aðrÞ ¼ N	̂

� ðr=L2Þ for r < L
ð1=rÞ for r > L

;

(2)

where, for continuity, 
0 ¼ ð1� 
Þ=K0ðxÞ, and for con-
tinuity of the derivative, 
 ¼ xK1ðxÞ=½NK0ðxÞ þ xK1ðxÞ�,
with x ¼ ð ffiffiffi

2
p

L=�Þ. Here the flux (charge) is uniformly
distributed inside a disk of radius L, and is zero outside.
The K0 Bessel function is the solution of the linearized
Landau-Ginzburg equations, so the ansatz has the correct
asymptotic form at long distances from the vortex core but
also (less obviously) immediately outside it. For a given
value of �=�, we determine L by numerically optimizing
the free energy of this profile. In the extreme type I limit for
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a single vortex (N ¼ 1), �=� � 1, L� � logð�=�Þ and
Ev � �F= logð�=�Þ.

Turning now to vortices in the Coulomb problem, the
general features are similar and hence we can gain quanti-
tative guidance by adopting the same variational ansatz as
in Eq. (2). However, in this case the ansatz does not have
the proper form at long distances; from general consider-
ations, as first discussed in the context of Abelian quantum
Hall states [23], it follows that in the presence of Coulomb
interactions the vortex has power-law tails in the charge
and current density, which decay like r�3 and r�2 respec-
tively. These do not, however, affect the basic length scales
in the problem significantly.

There are, of course, features of the vortex structure that
cannot be captured by our Landau-Ginzburg theory, most
notably the existence of a bound Majorana zero mode
and thus the non-Abelian statistics [5,24]. While of great
fundamental interest [25], these subtleties are irrelevant for
present purposes.

Vortex binding and optimal droplets.—The structure of
the vortex in a type I quantum Hall fluid, with the charge
density confined on a distance much shorter than that over
which the order parameter is suppressed, implies that
individual vortices are unstable to aggregation. To see
this, consider two vortices separated by a distance �.
As they share a common region of suppressed pairing
(j�j< 1) they gain an energy of order �0 while paying a
Coulomb energy of order �0ð�C=�Þ which is parametri-
cally smaller.

In the short-range case (�C ¼ 0) the Landau-Ginzburg
theory is formally identical to that of a superconductor,
where vortex aggregation continues indefinitely when

�=� < 1=
ffiffiffi
2

p
[21] and thus any number of vortices phase

separate macroscopically. The situation is different with
Coulomb interactions where the cost of macroscopic phase
separation is superextensive. Instead, when the concentra-
tion of vortices is small, they aggregate into droplets of
vorticity Nc and size �. We can obtain an estimate of Nc by
minimizing an expression for the energy density of vortices

ð�0 þ �0N
2�C=�Þ��=N, where the expression in the

bracket is an energy of one droplet with vorticity N.

In the extreme type I limit, this leads to an estimate Nc �ffiffiffiffiffi
�
�C

q
. This agrees with a variational calculation of the

optimal droplet using (2). Note that a bubble with vorticity
Nc and charge eNc=4 is, itself, a new sort of quasiparticle.
If Nc is odd (even), this quasiparticle will have (not have) a
Majorana zero mode and corresponding non-Abelian
(Abelian) braiding statistics.

Phase diagram near � ¼ 5=2—As we move away from
the ideal Pfaffian filling factor, � ¼ 5=2, we introduce a
pseudomagnetic field corresponding to the difference be-
tween the average density �� and the commensurate density
�Pf . For short-ranged interactions (�C ¼ 0) the QH system
behaves exactly like the superconductor and we get phase

separation between Pfaffian and metallic regions.
Specifically, the additional charge coagulates in a ‘‘nor-
mal’’ region with density ��c ¼ 1

�� which is the transcrip-

tion of the thermodynamic critical fieldHc (more precisely
Bc) to this setting. For ��� �Pf > ��c, the entire system is
metallic.
However, in the presence of Coulomb interactions, the

phase diagram of the type I Pfaffian is richer than that of its
superconducting cousin (see Fig. 1.) Now the tendency
towards phase separation is frustrated—which is a problem
much studied in recent years in several contexts [26–28].
At small deviations from the magic density, optimal bub-
bles (discussed above) form a triangular lattice bubble
crystal. For larger values of j ��� �Pfj, the bubble crystal
typically gives way to a stripe phase. At still larger values,
one typically finds an antibubble or droplet phase, which in
this case consists of puddles of Pfaffian phase embedded in
the majority metallic phase. The character of these various
‘‘microemulsion phases’’, and the structure of phase tran-
sitions between them will be explored in future publica-
tions. Note that phases where the Pfaffian percolates will
manifestly exhibit the QHE. In the remaining phases the
issue turns on the balance between the Pfaffian version of
the proximity effect [29] and the effects of quantum and
gauge fluctuations. The reader should contrast this com-
plexity with the case of the type II Pfaffian where the
density deviation is always accomodated via a triangular
lattice quasiparticle Wigner crystal formed on the back-
ground of the uniform Pfaffian state—analogous to the
Abrikosov lattice in a type II superconductor.

FIG. 1 (color online). Schematic phase diagram of the Pfaffian
phases with fixed Coulomb interactions as a function of density
deviation from � ¼ 5=2 (pseudomagnetic field) and the Landau-
Ginzburg parameter, �=�. Typical configurations of the different
inhomogeneous phases are shown, with red representing the
Pfaffian and white the metallic phase. For short-ranged inter-
actions, the microemulsion phases in the type I region are
replaced by a phase-separated intermediate state, with the
Pfaffian fraction decreasing continuously to zero as the boundary
to the composite fermion metal is approached.
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Experiments.—Recent experiments on the 5=2 state are
consistent with Pfaffian order. We believe that these are
further consistent with either type I or type II behavior.
Importantly, the fundamental unit of charge is e=4 even in
the type I regime, despite the binding of multiple vortices
or quasiparticles in the bulk, and the experiments to date
have probed exactly this quantization. These include
[30,31] which measure the charge tunneled across point
contacts, [32] which measure the charge contained in a
region via edge-state interferometry, and scanning probe
measurements [33] which are based on the existence of
disorder-induced compressible puddles. A detailed analy-
sis of the experiments is outside the scope of the present
Letter; we defer this to future work.

Concluding remarks.—Our identification of the
weakly coupled Pfaffian as a type I QH liquid is not
particularly sensitive to various approximations, such as
the neglect of fluctuations about various saddle points,
that we have employed in our treatment—essentially it
depends on the existence of a regime where � is
asymptotically larger than �� ‘B. The features we
obtain in that limit are macroscopic or semimacroscopic
and thus should be robust as well. That said, it is worth
drawing attention to a subtlety that we ignored in the
main text. The metallic phase is not really immune to
the pseudomagnetic field—it has ‘‘quantum oscilla-
tions’’ as a function of density (flux) reflecting the
existence of various integer (and even fractional) quan-
tum Hall states at special densities. Sufficiently close to
� ¼ 5=2 and in the strongly type I limit, the relevant
states will be fairly weak and likely to modify the
properties of the bubbles only at extremely low tem-
peratures. Of course, our considerations are sensitive to
the inclusion of disorder which will destroy true long
range order in the various microemulsion phases and at
sufficient strength, the underlying Pfaffian state as well.

In closing, we note that the nature of the phases pro-
duced by frustrated phase separation does depend critically
on the range of the frustrating interactions [27], i.e., x in
Eq. (1). For x > 3, the interactions are short-ranged, and
can be lumped with the compressibility term, yielding a
renormalized value of �. However, in the interesting dipo-
lar case, x ¼ 3, macroscopic phase separation is only
marginally forbidden. Here, the typical density in a puddle
is �� 	 ��c, and the size of the bubbles defines an emer-
gent length scale that grows exponentially as the size of the
dipole (distance to the gate d) decreases. This suggests that
the search for type I QH liquids would be greatly advanced
by investigating gated 2DEGs.
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