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We show theoretically that the sudden application of an appropriate ac field to correlated lattice

fermions flips the band structure and effectively switches the interaction from repulsive to attractive. The

nonadiabatically driven system is characterized by a negative temperature with a population inversion. We

numerically demonstrate the converted interaction in an ac-driven Hubbard model with the nonequilib-

rium dynamical mean-field theory solved by the continuous-time quantum Monte Carlo method. Based on

this, we propose an efficient ramp-up protocol for ac fields that can suppress heating, which leads to an

effectively attractive Hubbard model with a temperature below the superconducting transition temperature

of the equilibrium system.
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Introduction.—There is an increasing fascination with
the dynamics of fermions driven by external fields as a
result of recent developments in time-resolved experimen-
tal techniques in, e.g., ultracold atom physics [1] and
electrons in a crystal [2]. There, the external fields are
employed not only for probing the response against per-
turbation, but also for creating excited states to control
phases of the system. In particular, continuously driven
systems isolated from the environment exhibit nonequilib-
rium statistical distributions that dramatically alter their
physical properties. One basic, long-known example is the
negative temperature (T) distribution [3], where higher
energy levels are occupied (population inversion). If such
distributions are realized in correlated fermion systems, it
should have a huge impact on many-body physics since, as
we shall show, the originally repulsive interfermion inter-
action effectively turns into an attractive one as a result of
the negative T.

To start with, a realization of negative T requires as a
crucial condition that the energy spectrum is upper
bounded [3]. A spin system, for which the concept of
negative T was originally introduced [4], satisfies this
condition. Another promising candidate for negative T is
a many-particle system on a lattice, where particles form a
band structure with a finite bandwidth, as far as the inter-
band excitations induced by external fields are forbidden or
negligible. For instance, Ref. [5] proposes that a harmonic
potential trapping bosonic atoms in an optical lattice can be
inverted to realize a negative T.

In the present Letter, we take a totally different
approach, namely, a sudden application (quench) of a
sinusoidal force (ac field) to a lattice fermion system.
The effect of ac fields has been discussed previously in
the context of adiabatic processes (e.g., [6]), where the
hopping amplitude is effectively renormalized [7]. Here we
show that the ‘‘nonadiabatic’’ switch-on of the ac field can

dynamically invert the band structure (dynamical band
flipping), generating a negative-T distribution. Based on
this, we suggest that the ac quench is related to an inter-
action quench (‘‘ac=U-quench correspondence’’), where
the interaction can be effectively converted between repul-
sive and attractive. This is numerically demonstrated for
the ac-driven Hubbard model, whose time evolution is
obtained with the nonequilibrium dynamical mean-field
theory (DMFT) [8,9] solved with the continuous-time
quantum Monte Carlo (QMC) method [10].
One immediate question may be whether the sudden

switch-on of the ac field causes a violent heating of the
system. However, we shall show that the heating associated
with the sign change of the interaction can be suppressed if
the ac field is turned on in a suitable way. Therefore, if the
ac-driven system thermalizes, it will correspond to an
effectively attractive Hubbard model whose temperature
is low enough that the system can possibly accommodate
superconductivity.
Formulation.—We consider a model Hamiltonian,

H ðtÞ ¼ �JH K þUH I þ cosð�tÞX
j;�

KðtÞ �Rjnj� (1)

with H K ¼ P
hiji;�ðcyi�cj� þ H:c:Þ and H I ¼P

jðnj" � 1
2Þðnj# � 1

2Þ. Here cyj� creates a fermion at site j

with spin � for electron systems or pseudospin � for cold

atoms, Rj is a position vector, nj� ¼ cyj�cj�, Jð>0Þ the
hopping energy, U ð>0Þ the on-site interaction. The third
term in Eq. (1) represents the ac field with amplitudeK and
frequency �. We take, for the DMFT, a d-dimensional
hypercubic lattice with KðtÞ ¼ KðtÞð1; 1; . . . ; 1Þ, and con-
sider a half-filled band. We assume that the system is
initially in equilibrium at temperature T, and the ac field
is suddenly switched on at t ¼ 0, i.e., KðtÞ ¼ K�ðtÞ with
�ðtÞ the step function.
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It has been shown [7], for noninteracting systems, that
the effect of the ac field is simply a renormalization of the
hopping energy,

J ! Jeff ¼ J 0ðK=�ÞJ; (2)

with J nðzÞ the nth order Bessel function. A naive
explanation of Eq. (2) is that in the presence of the ac field
the original band dispersion �k ¼ �2J

Pd
i¼1 coski is re-

placed with a time-averaged ��k ¼ �
2�

R2�=�
0 dt�k�AðtÞ ¼

J 0ðK=�Þ�k, where we take a gauge in which the ac
field is represented by a vector potential AðtÞ ¼
�K sinð�tÞ=�. The renormalization of J can more
rigorously be derived from the Floquet theory for ac fields
[11]. Curiously, Jeff / J 0ðK=�Þ then changes sign as
A � K=� is increased. This implies that Jeff vanishes
atA1 ¼ 2:404 . . . (see the inset of Fig. 3), which is known
as dynamical localization [7]. Experimentally, the scaling
(2) was beautifully observed in a Bose-Einstein
condensate (BEC) in an optical lattice [12].

What happens when J 0ðAÞ< 0? In equilibrium, the
inverted sign of J does not change the physics, since it can

be canceled with a gauge transformation cyj� ! �cyj� for

the j 2 B sublattice. Out of equilibrium, however, we have
to consider the distribution of occupied states, and the
physics can indeed dramatically change as we cross the
zeros of J 0ðAÞ.

To characterize nonequilibrium distributions, we can

define a time-resolved spectral function, Að!; tÞ �
� 1

� Im
R
dt0ei!t0P

kG
R
k�ðtþ t0

2 ; t� t0
2Þ and an occupation

Nð!; tÞ � � i
2�

R
dt0ei!t0P

kG
<
k�ðtþ t0

2 ; t� t0
2Þ, in terms of

the retarded GR
k�ðt; t0Þ ¼ �i�ðt� t0Þhfck�ðtÞ; cyk�ðt0Þgi

and lesser Green function G<
k�ðt; t0Þ ¼ ihcyk�ðtÞck�ðt0Þi.

For noninteracting fermions we can evaluate [11], for
� � J, the longtime behavior as

Að!; tÞ ���!t!1 1

jJ 0ðAÞj�0

�
!

jJ 0ðAÞj
�
; (3)

Nð!; tÞ ���!t!1
Að!;1ÞfT

�
!

J 0ðAÞ
�
; (4)

where �0ð!Þ ¼ P
k�ð!� �kÞ is the noninteracting density

of states, fTð!Þ ¼ 1=ðe!=T þ 1Þ the Fermi distribution
with kB ¼ 1, and we have used the symmetry �0ð�!Þ ¼
�0ð!Þ. We notice that the sign of J 0ðAÞ is irrelevant to
the spectrum, but it is indeed relevant to the occupation. In
fact, for J 0ðAÞ< 0 the effective temperature is negative,
since fTð!=J 0ðAÞÞ ¼ f�Tð!=jJ 0ðAÞjÞ. One intuitive
way to interpret this is that, as the band is flipped when J
changes sign due to the ac field, each fermion follows the
change with no shift in the momentum (Fig. 1 for T < 0).
This is the essential mechanism for the negative T distri-
bution that we propose here.

Interacting systems driven by ac fields have
also been theoretically studied for the Bose-Hubbard

model [6,13], and the Falicov-Kimball model [11,14].
Let us assume that J is suddenly quenched by the
ac field as in Eq. (2). Then the density matrix time-

evolves as�ðtÞ ¼ e�itð�JeffH KþUH IÞ�ð0Þeitð�JeffH KþUH IÞ ¼
e�i~tð�JH KþUeffH IÞ�ð0Þe�i~tð�JH KþUeffH IÞ � ��

Að~tÞ, where

the upper (lower) sign corresponds to J 0ðAÞ> ð<Þ0,
and time is rescaled as ~t ¼ jJ 0ðAÞjt. After that, the
J quench is translated to the interaction quench [15] as

U ! Ueff ¼ U=J 0ðAÞ: (5)

For J 0ðAÞ< 0, the corresponding U quench evolves in
time with ��

Að~tÞ where the phase rotates in the reverse

direction. We can relate ��
Að~tÞ with the normal time evo-

lution �þ
Að~tÞ via an energy reversal; i.e., the signs of all the

quantities (except for time) that have dimension of energy
are reversed. For example, energy reversal maps kinetic
energy EkinðtÞ � �i

P
k�k�AðtÞG<

k�ðt; tÞ to �EkinðtÞ. We

summarize the relation between ac quench and U quench
in Fig. 2.
The ac=U-quench correspondence, which we numeri-

cally demonstrate in the following, has the intriguing con-
sequence that for J 0ðAÞ< 0 the ac field effectively
switches the many-body interaction from repulsive to at-
tractive (Ueff < 0Þ (5). In addition, it implies that the
system thermalizes to a negative-temperature canonical
distribution: according to the thermalization hypothesis
[15,16], the (nonintegrable) Hubbard model evolving
with normal �þ

Að~tÞ thermalizes after a U quench in the

long-time limit with a positive temperature Teff ð>0Þ. Since
��
Að~tÞ is related to �þ

Að~tÞ via the energy reversal (Fig. 2),

the ac=U-quench correspondence implies that the system
driven by the ac field should finally thermalize with a
negative temperature, �Teff=jJ 0ðAÞj.
Numerical result.—To verify the interaction switching

implied by the ac=U-quench correspondence in the dy-
namical band-flipping in interacting systems, we have
numerically computed the time evolution of the system
using the nonequilibrium DMFT [9], which can treat the

(T < 0)

(T > 0)

FIG. 1 (color online). A schematic band flipping accompanied
with a population inversion (T < 0) induced by the ac field when
J 0ðAÞ< 0 and without a population inversion (T > 0).

ac-quench

J-quench (2) U-quench (5) with

Floquet

rescaling of time

U-quench (5) with

energy reversal

FIG. 2. The ac=U-quench correspondence.
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dynamics of infinite systems with the local correlations
from the many-body interactions fully taken into account.
In the DMFT calculation, we restrict ourselves to para-
magnetic phases without charge order. The hopping is

scaled with dimension d as J ¼ J�=2
ffiffiffi
d

p
(d ! 1) [8]. In

the following we take J� as the unit of energy and write J�
as J. Even when fermions are initially weakly interacting,
the effective interaction (5) plunges into the strong-
coupling regime around the zeros of J 0ðAÞ, so that we
need an impurity solver that is valid for both weak and
strong interactions. Here we employ the continuous-time
QMC method based on a weak-coupling expansion [10],
which is numerically exact within statistical errors.

A simple measure of whether the interaction is repulsive
or attractive is the double occupancy, DðtÞ ¼ hnj"ðtÞnj#ðtÞi.
Figure 3 displays the time evolution of the double occu-
pancy for various amplitudes A ¼ K=� with fixed
� ¼ 2�, U ¼ 1, and T ¼ 0:1. DðtÞ starts from the equi-
librium value, which is, for the repulsive interaction,
smaller than the noninteracting value, hnj"ihnj#i ¼ 0:25.

For A<A1 (left panel of Fig. 3), DðtÞ decreases with
t, which is natural since the effective interaction (5) is
enhanced. For large effective interaction, the double occu-
pancy shows 2�=U-periodic collapse-and-revival oscilla-
tions [15], while the fast oscillations with frequency 2�
come from a nonlinear effect of the ac field.

The double occupancy starts to behave in a dramatically
different manner as we plunge into theJ 0ðAÞ< 0 regime,
i.e., A1 <A<A2 ¼ 5:520 . . . (right panel of Fig. 3):
DðtÞ steeply increases after the ac field is switched on,
and even goes ‘‘beyond’’ the noninteracting value 0.25.

This implies that fermions prefer a large double occupancy,
evidence that the many-body interaction indeed turns into
an attraction. When J 0ðAÞ returns to positive for
A>A2, DðtÞ again becomes smaller than 0.25, and the
effective interaction goes back to repulsive.
To endorse the ac=U-quench correspondence (Fig. 2)

quantitatively, we plot DðtÞ [solid curves in Fig. 3, plotted
as a function of the rescaled time t ¼ ~t=jJ 0ðAÞj] and
EkinðtÞ [dashed curve in Fig. 4(c)] for the U quench calcu-
lated with �þ

Að~tÞ. For DðtÞ, we can see that the U quench

results agree with those for the (nonoscillatory components
of) the ac quenches to a surprisingly good accuracy. The
accuracy is especially excellent for A * 4, while for
A & 3 the small differences seen between the U and ac
quench come from the fact that it takes a few cycles for the
ac field to renormalize J. For J 0ðAÞ< 0 we again con-
firm the ac=U-quench correspondence in the kinetic energy
if we consider the energy reversal EkinðtÞ ! �EkinðtÞ in the
U quench [a sign-inverted plot of the dashed curve in
Fig. 4(c)] and time-average EkinðtÞ over one cycle in the
ac quench (black curve).
As for the population inversion, we can also obtain its

direct evidence by calculating the (gauge-invariant) mo-

mentum distribution function [11] fð~k; tÞ � �iG<
~k
ðt; tÞ

(~kðtÞ ¼ kþAðtÞ) in Fig. 4(a), and Að!; tÞ and Nð!; tÞ
[17] in Fig. 4(b) for the same U, �, and T as in Fig. 3,

withA ¼ 4 [for whichJ 0ðAÞ< 0]. We plot fð~k; tÞ along
a typical slice [18] in the Brillouin zone. In the initial state,

the particles distribute around � �
2 <

~k < �
2 with a blurred

Fermi surface. As the ac field is turned on, the distribution
is gradually smeared out, but the main population contin-

ues to stick to � �
2 <

~k < �
2 . This sharply contrasts with

what has been observed in BECs [12]: there, the system
adiabatically follows the lowest energy states with no
population inversion (Fig. 1 for T > 0) with the peak of

FIG. 3 (color online). Time evolution of the double occupancy
D for various values ofA � K=� (symbols with error bars) for
� ¼ 2�, U ¼ 1, with the horizontal line indicating the free-
electron value of D ¼ 0:25. Solid curves represent the corre-
sponding result for the U quench with �þ

Að~tÞ plotted on a

rescaled time axis t ¼ ~t=jJ 0ðAÞj. Inset depicts the Bessel
function, J 0ðAÞ.
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FIG. 4 (color online). (a) The momentum distribution, (b) the
spectral function (thick curve), the occupation (shaded region),
and (c) the kinetic energy for an ac quench with A ¼ 4,
� ¼ 2�, and U ¼ 1 (oscillatory curve, along with a time-
average in black), as compared with the corresponding
U quench (dashed curve, along with a sign-inverted plot). The
top left inset schematically shows a negative-T situation.
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fð~k; tÞ shifted by � in the flipped band [19]. However, our
results indicate that, with sufficiently fast ramp up of the ac
field in fermion systems, the system does not relax to lower
energy states, but the population can be inverted. The
population inversion is more directly seen in Nð!; tÞ
[Fig. 4(b)], where fermions tend to occupy higher energy
states (!> 0), justifying our picture (Fig. 1 for T < 0).
This kind of drastic change of the dynamics as a function of
the parameter is reminiscent of phenomena observed in
nonlinear mechanics. It may thus be interesting to try to
connect bifurcation theory [20] to the band-flipping phe-
nomena found here.

Suppression of heating —Now that the ac field is found
to effectively convert a repulsive interaction into an attrac-
tion, one may contemplate the possibility of ac-induced
superconductivity (SC), assuming that the system thermal-
izes. The obvious interest is that it is far easier to realize SC
in attractive systems with s-wave pairing than in repulsive
ones where the SC gap has to be anisotropic, so that the ac
drive may provide an advantageous as well as novel avenue
for SC. However, a simple, sudden quench would heat the
system to, e.g., jTeff=Jeffj ¼ 1:83� 0:02 for A ¼ 4,
� ¼ 2�, and U ¼ 1 (Fig. 4), which is much larger than
the critical temperature for the attractive Hubbard model
(Tc=J � 0:1 for U��2 [21]). So the crucial question is
whether we can avoid such a heating.

A smooth change inUeff from positive to negative might
seem desirable, but this is unfortunately impossible, since
jUeff=Uj has to cross a singularity at jJ 0ðAÞj ¼ 0.
Instead, we propose here a ‘‘multistep quench’’ (an ex-
ample is shown in the left panel of Fig. 5). (i) We start from
a weak interaction. (ii) This is followed by a sudden
quench (to avoid the above problem) to an attractive but
still weak interaction. The reason we start from a smallU is
that a larger jump ofUeff in a sudden quench tends to cause
a higher temperature. (iii) After the sudden quench we
employ a smooth ramp to amplify Ueff .

In the right panel of Fig. 5 we plot Teffð~tÞ for
one example of the multistep U quench (Ueff ¼ 0:2 !
�0:5 ! �2), which is estimated by equating the total
energy of the system at each rescaled ~t with the one for
an equilibrium systemwith temperature ~T. For the example
displayed here jTeffð~t ¼ 5Þ=Jeffj ¼ 0:080� 0:004 with an
initial T=J ¼ 0:05, which accomplishes a temperature
lower than Tc=J � 0:1.

Finally, we mention the stability and experimental feasi-
bility of the population inversion. Once the negative-T
distribution is realized, it does not relax to a lower energy
state due to energy conservation as long as the system is
isolated from the environment with no energy dissipation. If
fermions are coupled to other degrees of freedom, the dis-
tribution should start to collapse to the normal one with a
positiveTwith a decay rate determined by the strength of the
coupling to the environment. One good candidate that can
avoid this difficulty is a system of cold fermionic atoms

trapped in an optical lattice, which is a virtually ideal,
isolated single-band system [5]. There, a conversion from
attractive to repulsive interactions, which is equally feasible,
may also be interesting. For electron systems, possible can-
didates are superlattices or arrays of nanostructures designed
to realize a single-band well separated from other bands.
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FIG. 5 (color online). An example of a multistep quench (left
panel), and the corresponding evolution of Teffð~tÞ (right). The
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