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We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid quantum phase transition by

using an ultracold atomic gas trapped in an optical lattice. Quenching from the Mott insulator to the

superfluid phase is accomplished by continuously tuning the ratio of Hubbard tunneling to interaction

energy. Excitations of the condensate formed after the quench are measured by using time-of-flight

imaging. We observe that the degree of excitation is proportional to the fraction of atoms that cross the

phase boundary and that the quantity of excitations and energy produced during the quench have a power-

law dependence on the quench rate. These phenomena suggest an excitation process analogous to the

Kibble-Zurek mechanism for defect generation in nonequilibrium classical phase transitions.
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The study of nonequilibrium phase transitions is wide
ranging, touching on topics as diverse as the formation of
structures in the early Universe [1] and the practicality of
adiabatic quantum computing [2]. The so-called ‘‘Kibble-
Zurek’’ (KZ) mechanism has been used to understand
some universal features—principally the rate of topologi-
cal defect formation—of quenches across classical phase
transitions [1,3]. ‘‘Quench’’ in this context refers to rapidly
varying a thermodynamic parameter in order to drive the
system across the critical point of a phase transition and out
of equilibrium for a finite time. The KZ theory has recently
been extended to quantum phase transitions [4–12]. In
contrast to the classical case, quantum phase transitions
involve closed quantum mechanical evolution at zero tem-
perature, for which quenches are accomplished by varying
a parameter in the Hamiltonian in order to tune between
different quantum phases. While the KZ mechanism has
successfully been tested for classical transitions (e.g., on
liquid crystals [13]), and spontaneous vortex formation has
been observed during cooling an atomic gas through the
Bose-Einstein condensation transition [14], experimental
examination of quantum quenches in the context of the KZ
mechanism has been scant. Notably, there is evidence that
the formation of ferromagnetic domains in a spin-1 Bose-
Einstein condensate can be attributed to a quantum quench
[15]. In this work, we probe quantum quenches for a
paradigm of quantum phase transitions—the Bose-
Hubbard model—by using atoms confined in an optical
lattice. In contrast to previous experiments [16], we quench
from the Mott insulator (MI) to the superfluid (SF) state,
and we systematically investigate the formation of excita-
tions as the quench amplitude and rate are varied.

In our experiment, a cubic optical lattice formed from
three intersecting pairs of 812 nm laser beams is super-
imposed on a parabolically confined 87Rb Bose-Einstein
condensate; details of our apparatus can be found in
Ref. [17] and references therein. The atoms in the lattice
are described by the inhomogeneous Bose-Hubbard model

with Hubbard tunneling energy t and interaction energy U,
the ratio of which is controlled by tuning the lattice laser
intensity to adjust the lattice potential depth s. By changing
s, MI and SF phases can be sampled inhomogeneously in
the gas [18]: For s * 13ER nested Mott-insulator and
superfluid layers exist in the lattice, and for s & 13ER

the gas is purely superfluid, as shown in Fig. 1 (ER ¼
h=8md2, where m is the atomic mass, d ¼ 406 nm is the
lattice spacing, and h is Planck’s constant).
Quenching across the SF-MI phase transition is accom-

plished by adjusting s dynamically in such a way to trans-
form the gas between equilibrium configurations with and
without atoms in the MI phase present (Fig. 1). While
quenches are possible on all relevant time scales, in this
Letter we explore quenches that occur at rates 1=�Q ¼
dðt=UÞ=d� (� is time) that are too slow to excite atoms
into higher vibrational states in the lattice potential. How
1=�Q compares with U=h and t=h is complicated because

the phase boundary is crossed at a range of densities and
t=U in the trap, and therefore the Hubbard energies Uc and
tc at the phase transition change during the quench. Despite
this, the quenching rate is always slow compared with Uc,
since 1=�Q varies from 1� 10�3 � 0:2Uc=h. The quench
rate is not consistently fast or slow compared with tc [19]
or the confining trap frequencies, the geometric mean of
which varies (because of confinement from the lattice
beams) from 43� 2 Hz at s ¼ 0ER to 82� 6 Hz at s ¼
25ER. The trap aspect ratio changes from 1:1:3:1:8 to
1:1:1:2 across the same range.
The effect of variations in the fraction of atoms crossing

the SF-MI phase boundary is investigated by quenching s
linearly in 5 ms from a variable initial value s0 to s ¼ 4ER

(corresponding to t=U � 1, i.e., the purely SF regime), as
shown in the inset in Fig. 2 [20]. The ratio t=U changes
nonlinearly during this quench, and therefore 1=�Q
(according to our definition) varies during the quench; in

the large s limit, t=U / e�2
ffiffi
s

p
[21]. The fraction of atoms

crossing the phase boundary is varied by adjusting s0. The
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data shown in Fig. 2 sample a range such that at high s0
nearly all of the atoms start in the MI phase (with fillings
ranging from 1 to 3 particles per site) and therefore cross
the phase boundary and at low enough s0 so that all of the
atoms are in the SF phase, and consequently no atoms cross
the phase boundary. The fraction of atoms in the MI phase
before the quench, which is identical to the overall fraction
of atoms traversing the phase boundary, is shown as a
red line in Fig. 2 and is determined according to the
measured atom number and a zero-temperature mean-field
calculation in the local-density approximation [18]. After
the quench, the lattice is turned off in 200 �s. This
‘‘band-mapping’’ step [17]—which maps quasimomentum
in the lattice to free momentum and suppresses atom

diffraction—is necessary to improve the imaging signal-
to-noise ratio given the long expansion times employed for
these measurements.
The amount of excitation produced during the quench is

determined by measuring the deviation from a smooth
profile of time-of-flight (TOF) images taken after release
of the trapped gas immediately following band mapping.
The absorption image is taken after a relatively long 50 ms
of free expansion, so that vortices, if present, are visible
[22], and phase gradients related to other topological or
wavelike excitations are converted into large density
fluctuations [23]. We fit the image to a smooth function f
that is a combination of a Thomas-Fermi profile and a
Gaussian and measure the amount of excitation ~�2 as

the deviation from the smooth profile: ~�2 ¼ P
ij ~�

2
ij ¼

�
P

ij
ðOIJ�fijÞ2

fij
=
P

ijOij, where i and j index the pixels in

the image within a mask defined by an imaging signal-to-
noise ratio greater than 5, O is the measured optical depth,
and � is a proportionality constant that is determined by
using a numerical simulation. We find that all of the images
used in this work are well described by this fit—a conden-
sate is present after the quench under all circumstances,
and the condensate fraction varies from 0.35 to 0.6 across
all of the data. While it was suggested in Ref. [24] that the
condensate fraction may oscillate after the quench, we find
no evidence for such behavior.
The measure ~�2 is chosen such that it is related to the

fraction of atoms in excited states for the trapped, weakly
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FIG. 2 (color online). Amount of excitation produced by
quenching as the fraction crossing the phase SF-MI boundary
is varied. The top left inset shows the experimental timeline; a
magnetic field gradient is applied to support the atoms against
gravity during TOF. Characteristic TOF images are shown as
insets for s0 ¼ 9, 15, and 25ER, and the error bars in this and the
next figure are the standard deviation for the average taken over
5 images. There is a 7% systematic uncertainty to s0, which is
calibrated by using Kapitza-Dirac diffraction. The overall un-
certainty in the MI fraction (red line) ranges from 30% at s0 ¼
16ER to 10% at s0 ¼ 20ER; below s0 ¼ 12ER and above s0 ¼
22ER, the uncertainty in the MI fraction is zero.
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FIG. 1 (color). Quench across the MI-SF boundary (a) and
excitation measure (b). (a) As shown by the vertical lines, the
trapped gas samples a range of densities and effective chemical
potentials ~� (in the local-density approximation) [18]; MI re-
gions in the gas are colored red and SF blue. Given the overall
confining potential in our experiment and atom number [ð161�
13Þ � 103, averaged across all measurements], the maximum ~�
is roughly fixed at 2U for the measurements described here,
which corresponds to a central filling of 4 atoms per site at low s
and a central MI with 3 atoms per site at high s. A quench is
accomplished by rapidly reducing s and thereby increasing t=U,
as shown by the arrow. (b) A slice (black line) through a typical
image (inset) taken after a quench for s0 ¼ 25ER is displayed.
The image is fit to a smooth profile (red line), which is used to
determine the deviation ~�2

ij (blue line) at each pixel in a masked

region (gray).
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interacting gas present before band mapping. The physical
meaning of ~�2 can be understood most straightforwardly
for a one-dimensional noninteracting gas. In this case, the
density profile after a sufficiently long TOF is the momen-
tum distribution nðqÞ ¼ jc ðqÞj2 ¼ jc 0ðqÞ þ �c ðqÞj2,
where �c are plane-wave excitations, c 0ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
n0ðqÞ

p
is

the ground-state condensate wave function, and we work in
the momentum representation. After averaging over ran-
dom excitation phases, the number of atoms in excited
states is

R
dqj�c ðqÞj2 ¼ R

dqf½nðqÞ � n0ðqÞ�g2=2n0ðqÞ.
Given that

R
dqn0ðqÞ is the total number of atoms, ~�2 is

naturally interpreted as proportional to the number of
excited atoms in the noninteracting limit.

Using a numerical simulation of the 3D time-dependent
Gross-Pitaevskii equation, we determined that ~�2 accu-
rately reproduces the fraction of Bogoliubov excitations
for a trapped condensate (even though the density after
TOF is not the momentum distribution) and the constant �.
We start the simulation with a condensate at equilibrium in
a parabolic trap (by using the experimental parameters)
and imprint Bogoliubov excitations under the local-density
approximation for a range of wave vectors corresponding
to 0:8–3 �m�1; the Thomas-Fermi radius of the gas is
approximately 10 �m before release. Images are gener-
ated by time evolving the condensate wave function for a
free expansion and then integrating through the imaging
line of sight. The measure ~�2 is determined for a range of
excitation fractions averaged over 10 relative phases.
We determine that ~�2 is equal to the fraction of excited
atoms for� ¼ 10 under simulated conditions. This method
does not properly account for long-wavelength (i.e.,
trap-length-scale) excitations or topological excitations
such as vortices, which are evident in the insets in Figs. 1
and 2.

As shown in Fig. 2, we find that ~�2 is proportional to the
fraction of atoms crossing the phase boundary. Below the
emergence of the unit filling MI phase at s0 � 13ER, ~�

2 is
constant at ~�2

0 � 0:06 (determined by averaging over all

images with s0 < 13ER and indicated by the dashed line in
Fig. 2), a value that is consistent with the combination of
photodetection shot noise and technical noise present in
our imaging system. Above s0 � 13ER, the degree of
excitation grows, until ~�2 saturates to approximately 0.17
at high lattice depth, for which more than 90% of the atoms
are in the MI phase.

The behavior evident in Fig. 2 suggests that a Kibble-
Zurek-like mechanism is responsible for generating exci-
tations during the quench. In the KZ picture, the diverging
relaxation time near the phase boundary ‘‘freezes in’’
fluctuations in the relative phase between atomic wave
functions at different lattice sites present in the MI [6].
Some time after crossing the phase boundary, dynamics
effectively restart, and the fluctuations develop into super-
fluid excitations, potentially including sound waves and
topological excitations such as vortices. Given that only the

regions of the lattice that cross the SF-MI phase boundary
will give rise to excitations, the direct relation between the
fraction initially in the MI phase and the degree of excita-
tion is strong evidence for KZ physics.
In the KZ scenario, the quench rate controls the number

of excitations generated according to a power law
that depends on the critical exponents for the phase tran-
sition. We measured this power law, as shown in Fig. 3,
across 2 orders of magnitude in quench rate. For this
measurement we quench the lattice potential depth starting
from a gas composed nearly entirely of the MI phase

at s0 ¼ 20ER (i.e., t=U ¼ 0:005) according to sð�Þ ¼
0:25ln2½ð�as=

ffiffiffi
2

p
dÞ �

�Q
þ e�2

ffiffiffiffi
s0

p � (as � 5 nm is the scatter-

ing length) so that 1=�Q is approximately constant.

Because ~�2 may misinterpret excitations such as vortices
and to estimate the quench-induced heating, we also
measure the kinetic energy generated by the quench.
The kinetic energy (KE) per particle is measured
from TOF images according to KE ¼ mhr2i=2�2TOF,
with the second moment of the density distribution
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FIG. 3 (color online). Excitation dependence on quench rate.
The amount of excitation and kinetic energy determined from
TOF images is shown as the quench rate 1=�Q is varied. The

measured offset ~�2
0 is subtracted from ~�2. Analogously, the

measured expansion energy without the quenchKE0 (determined
by averaging across images with s0 < 13ER) is subtracted from
KE. For comparison, the critical temperature for condensation in
the trap before turning on the lattice and after band mapping is
approximately 100 nK. The inset shows the experimental
timeline.
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hr2i ¼ 3
2

P
ijOijr

2
ij=

P
ijOij after the TOF �TOF. The factor

of 3=2 arises from assuming the energy is distributed
equally among three directions.

A fit (solid lines) to the data in Fig. 3 reveals power laws
1=�rQ for ~�2 and KE consistent within the fit uncertainty:

r ¼ 0:31� 0:03 and 0:32� 0:02, respectively. While there
are numerous detailed theoretical predictions for the number
of excitations produced during a quench across the MI-SF
phase transition [4,6,8–10], none that we know of are
directly applicable to our experiment. Generically, the size
of domains associated with an excitation formed during the

quench should scale as ��=ð�zþ1Þ
Q [25], where z is the dy-

namical critical exponent and the correlation length diverges
as ðt=U� tc=UcÞ�� near the phase boundary. In three di-
mensions, the density of excitations is therefore proportional

to 1=�3�=ð�zþ1Þ
Q . For our experiment, nearly all of the atoms

cross the ‘‘generic’’ phase transition and not the multicritical
point at the ‘‘tip’’ of the MI ‘‘lobes.’’ In this case � ¼ 1=2
and z ¼ 2, and therefore the number of excitations should

scale as 1=�3=4Q , which is inconsistent with our data.

This disagreement may be explained by numerous issues
that deserve more theoretical attention. For example, the
spatially inhomogeneous nature of the gas gives rise to a
phase transition ‘‘front’’ that moves through the gas; this
has been examined in the context of certain classical and
quantum phase transitions [5,26]. Depending on the nature
of the excitations, nex may scale differently with �Q—

e.g., if the excitations are only vortices, then nex �
1=�1=2Q , which is the areal density of vortex lines. Also,

the finite size of the gas will affect quench dynamics, as
discussed in Ref. [11] for the Bose-Hubbard model in 1D.
Finally, since the data here were taken at a low but finite
temperature (the initial condensate fraction was more than
90% before turning on the lattice), thermal effects may
play an important role in the quench dynamics [7,27].

In conclusion, the method we have demonstrated pro-
vides a window into excited states and dynamics, which are
beyond our current theoretical understanding in a wide
variety of strongly interacting many-body quantum sys-
tems. Quench dynamics may also have significant conse-
quences for thermometry in optical lattice experiments
[28]. One commonly employed technique to estimate tem-
perature in a lattice is to slowly turn off the lattice poten-
tial, measure temperature, and then infer entropy in the
lattice assuming that the turn-off was adiabatic. We find
across a wide range of linear lattice quench rates that
adiabaticity is violated; for example, for a quench from
s0 ¼ 20ER, ~�

2 decreases from 0.17 to only 0.12 for turn-
off times varying from 5 to 25 ms.
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