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In the standard �f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained

analytically via the solution of a nonlinear equation. The first-order correction�f is subsequently computed

as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision

operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau,

Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical

codes have appeared which attempt to compute the total distribution fmore accurately than in the standard

ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some

form of the linearized collision operator. In this work we show that higher-order corrections to the

distribution function may be unphysical if collisional nonlinearities are ignored.
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While neoclassical transport is generally subdominant
to drift-wave-driven turbulent transport in the tokamak
core, neoclassical transport can become important in the
H-mode edge transport barrier region and in internal
transport barriers, where turbulence is suppressed, and
in the near axis region, where the temperature and den-
sity gradients become small. In both cases, nonlocal
effects, which are not retained in the standard theory
[1], are believed to play an important role in the transport
dynamics. Specifically, in a transport barrier, the charac-
teristic short temperature and density gradient length
scales can be comparable to the ion poloidal gyroradius,
while near the magnetic axis, trapped particles follow
potato orbits, for which the orbit width becomes compa-
rable to or larger than the minor radius. Over the past
decade there have been attempts to use direct numerical
simulation to describe nonlocal and other effects [2].
Numerical codes (of both the gyrokinetic [3] and neo-
classical [4,5] type) have appeared with the aim of
computing a more accurate solution than that described
by the standard �f model [6]. While there are advanced
analytic treatments relevant to, for example, the plasma
flow in the H-mode pedestal [7] as well as the gyroki-
netic treatment of toroidal angular momentum transport
[8], no consensus regarding a suitable systematic formal-
ism appropriate for numerical simulation has emerged. In
fact, the numerical simulations may sometimes ignore
key terms that are retained in the analytic theories.
Although there is not, at this time, a standard general-
ization of the local theory relevant for numerical simu-
lation, a representative starting point in the neoclassical
limit is the well-known Hazeltine equation [9] for the
total ion distribution f:

df

dt
þ vg � rfþ _�

@f

@�
¼ Cðf; fÞ: (1)

Above, vg is the general guiding-center velocity which

includes both perpendicular and parallel drifts. The

gradient is taken at constant total energy E ¼ v2=2þ
zie�0=mi. In these expressions, C is the nonlinear
Fokker-Planck collision operator, v is the particle veloc-
ity, �0 is the equilibrium-scale electrostatic potential, zi
is the ion charge, and mi is the mass of the primary ion
species. There appears to be a tacit consensus that Eq. (1)
forms a sufficiently accurate model for nonlocal dynam-
ics because it includes so-called finite-orbit effects
through the advective term vg � rf [10,11]. And, impor-

tantly, the left-hand side of Eq. (1) was shown by Hinton
[12] to be exactly conservative—insofar as it can be
transformed to an exact phase-space gradient. This fea-
ture is often considered advantageous for numerical
simulation. On the other hand, the complexity of the full
nonlinear collision operator in Eq. (1) is such that all
existing research groups take a pragmatic approach and
replace it with some model form of the linearized operator
CLðfÞ. Indeed, even the test-particle part of CL is so
complicated that the numerical codes referred to above
implement it in model [13], rather than exact [14], form.
Calculations by Simakov and Catto [15] in the limit of

short mean-free path, however, show that corrections to
the Hazeltine equation (which is valid to all orders in
the poloidal gyroradius �ip) appear at second order in the

ion gyroradius �i. Even so, the Simakov model has not
been the focus of any simulation work. Presumably, this
has happened because full-f research attempts to extend
the accuracy of local calculations to include higher-order
poloidal gyroradius corrections. In this regime, poloidal
ion gyroradius over scale-length deviations from a local
Maxwellian equilibrium are possible. However, if accurate
corrections to the local theory are of interest, then the
common practice of linearizing C is incorrect. It is the
repercussions of using only a linearized collision operator
in the Hazeltine model that is the focus of the remainder of
this work. Coupling to electrons and impurities is ignored
to focus on the nonlinear effect of concern.
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Perturbative hierarchy.—The Hazeltine equation for the
total f is intractable in toroidal geometry. Still, asymptotic
consistency requires that as �ip=a ! 0, the exact solution

f must satisfy

f� f0 � f1 � � � � � fN ! 0; (2)

where fN is theNth term in the expansion of f in powers of
�ip=a. By considering the steady-state limit, and under

the further simplifying assumption that the potential � ¼
�0ðrÞ is a flux function [16], a series expansion in powers
of �ip=a yields the hierarchy

vkb � rf0 � Cðf0; f0Þ ¼ 0; (3)

vkb � rf1 � CLðf1Þ ¼ Lvf0; (4)

vkb � rf2 � CLðf2Þ � Cðf1; f1Þ ¼ Lvf1; (5)

where Lv is the differential operator

L v¼: �vD �rþvð0ÞE �rþzie

mi

vD �r�0

@

@"
� _�

@

@�
: (6)

In contrast to Eq. (1), we have evaluated gradients at
constant kinetic energy " ¼ v2=2. To keep the details
as simple as possible, we use the low-� approximation,
ða=B2Þjdp=drj � 1, to write [17]

v ð0Þ
E � r� ¼ I

c 0
c

J cB
2
�0

0; (7)

v D � rr ¼ � I

c 0
v2
k þ�B

�B

1

J cB

@B

@�
; (8)

v D � r� ¼ I

c 0
v2
k þ�B

�B

1

J cB

@B

@r
� I0

c 0
�B

�B

1

J c

; (9)

vkb � r� ¼ vk
J cB

; (10)

_� ¼ ��vD � rr
I0

I
: (11)

Above, � is the magnetic moment,� ¼ zieB=ðmicÞ is the
ion cyclotron frequency, c is the poloidal flux divided by
2�, b ¼ B=B,

B ¼ r’�rc þ Ir’; (12)

and J c ¼ ðrc �r� � r’Þ�1. C is the like-species (non-

linear) collision operator, which can be written in Landau
[18] form as

Cðf;gÞ¼�Lii

@

@vk

Z
d3v0Ukl

�
fðvÞ@gðv

0Þ
@v0

l

�gðv0Þ@fðvÞ
@vl

�
;

(13)

where Ukl ¼: ðu2�kl � ukulÞ=u3, uk ¼: vk � v0
k, and Lii ¼

4�z2i e
4 ln�=m2

i . In Eqs. (4) and (5), CLðgÞ ¼ Cðg; f0Þ þ
Cðf0; gÞ is the linearized collision operator. Noting that
Uklul ¼ 0, it is easy to show directly from Eq. (13) that
Cðf0; f0Þ ¼ 0, where f0 is a local Maxwellian:

f0 ¼ nðrÞ
½2�TðrÞ=mi�3=2

e�mi"=TðrÞ: (14)

By inspection, it is clear that the solution of Eq. (3) is also a
Maxwellian. Proceeding to Eq. (4) for the first-order dis-
tribution f1, we insert the solution for f0 to obtain

vkb �rf1�CLðf1Þ¼vD �rr
�
�@f0

@r
� e

T

@�0

@r
f0

�
: (15)

This equation represents the standard model for neoclassi-
cal transport and cannot be solved analytically in the
general case.
Exact solution for f1.—An important limit, for which an

exact first-order solution exists, is the case of a single ion
species with uniform temperature. By noting the identity

v D � rr ¼ I

c 0 vkb � r
�
vk
�

�
; (16)

and assuming zero temperature gradient, we can reduce
Eq. (15) to

vkb � rf1 � CLðf1Þ ¼ vkb � r
�
vk
�

�
Fðr; "Þ; (17)

where

Fðr; "Þ ¼: � I

c 0

�
d lnn

dr
þ zie�

0
0

T

�
f0: (18)

The solution of this equation is simply the first-order part
of the low-flow drifting Maxwellian,

f1 ¼
�
vk
�

�
Fðr; "Þ: (19)

To obtain this result we have used CLðf0vkÞ ¼ 0, which
reflects momentum conservation. While the first-order so-
lution is independent of the collisional regime, the higher-
order solutions are not.
Asymptotic solution for f2.—Some algebra shows that

Eq. (5) reduces exactly to the following relatively compact
inhomogeneous equation for f2:

vkb � rðf2 � ~f2Þ ¼ CLðf2Þ þ Cðf1; f1Þ; (20)

where

~f2 ¼ � 1

2

�
vk
�

�
2
Gðr; "Þ: (21)

Here, G is the profile function

Gðr; "Þ ¼ I

c 0

�
@F

@r
þ zie�

0
0

T
F

�
: (22)
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The functionGwill appear as a driving term in the solution
in all collisional regimes, the banana and Pfirsch-Schlüter
regimes in particular. The (perturbative) nonlocal character
of the solution is evident in the second derivatives appear-
ing inG. To obtain the solution in the limit Lii ! 0, we see
by inspection that

f2 � ~f2 ¼ g2ð";�;�; rÞ þOðLiiÞ; (23)

where g2 is an integration constant which is determined by
the appropriate solvability condition. Although g2 is inde-
pendent of the poloidal angle �, it may in principle depend
on the sign of velocity, � ¼ jvkj=vk.

Solvability with linear collisions.—First we examine the
case for which only the linearized collision operator CL is
retained. Then, the solvability condition takes the formI d�

vk
J cBCLðf2Þ ¼ 0: (24)

We can write this symbolically as*
B

vk
CLðf2Þ

+
¼ 0; (25)

where the angle brackets denote a flux-surface average.
Solvability with nonlinear collisions.—On the other

hand, if the nonlinear collision operator is properly ac-
counted for, then the solvability condition takes the form*

B

vk
ðCLðf2Þ þ Cðf1; f1ÞÞ

+
¼ 0: (26)

At this point, we note the identity

Cðf0vk; f0vkÞ ¼ � 1

2
CLðv2

kf0Þ; (27)

which can be proved directly from the Landau form of the
like-particle operator, Eq. (13). Remarkably, this allows us
to express the nonlinear solvability condition completely in
terms of the linearized operator*

B

vk
CL

 
f2 � 1

2

v2
k

�2

F2

f0

!+
¼ 0: (28)

Symbolic solution.—The solution of an equation of the
form*

B

vk
CL½gð";�;�; rÞ ��ð";�;�; r; �Þ�

+
¼ 0 (29)

can be written as gð";�;�; rÞ ¼ ��, where the overbar
denotes a linear transformation which corresponds roughly

to a flux-surface average. More precisely, we refer to �� as
the collisional average of �. Computing this transform
exactly is analytically intractable in the general case. Still,
using this notation, the solutions fL2 of Eq. (25) and fNL2 of
Eq. (28) can be written

fL2 ¼ 1

2

�
vk
�

�
2
G� 1

2

�
vk
�

�
2
G; (30)

fNL2 ¼ 1

2

�
vk
�

�
2
G� 1

2

�
vk
�

�
2
Gþ 1

2

�
vk
�

�
2 F2

f0
: (31)

Physically, the two solutions are quite distinct. While the
collisional average of fL2 is zero, the solution including the
collisional nonlinearity fNL2 contains a significant contri-
bution from Cðf1; f1Þ which does not vanish on collisional
average. For clarity, we emphasize that the solutions above
apply only to the special case of uniform temperature.
Physical interpretation.—Some insight into the differing

solutions can be obtained by examining more closely the
form of the function g2.

gNL2 ¼ 1

2

�
vk
�

�
2
�
Gþ F2

f0

�
(32)

¼ 1

2

�
vk
�

�
2
f0

zie

cTi

I

c 0
@

@r
hUkBi; (33)

which shows that only the shear in the parallel velocity,
hUkBi ¼ �ðcT=eziÞðI=c 0Þðd lnn=drþ zie�

0
0=TÞ, acts as

a drive. Indeed, because of the Galilean invariance of the
nonlinear collision operator, a rigidly rotating Maxwellian
cannot act as a neoclassical drive. However, if C is
approximated by CL, exactly such an unphysical drive
will occur. We also remark that in the absence of
parallel velocity shear, the solution reduces to fNL2 ¼
ðmivkhUkBi=BTÞ2=2, which is just the second-order part

of a drifting Maxwellian in the low-flow ordering.
Banana-regime example.—We can give the calculation a

more intuitive flavor by carrying out the averaging opera-
tion explicitly in the banana regime using the model
Kovrizhnikh operator. When acting on an even function
of �, the Kovrizhnikh operator reduces to the pitch-angle
scattering (Lorentz) operator

CL � B

B0

vk
"

@

@�
�vk

@

@�
; (34)

with � ¼ �B0=", vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"ð1� �B=B0Þ

p
, such that B0 is

the on-axis magnetic field strength. Some algebra then
shows that the solvability condition in the case of the linear
operator is

@

@�

"
� @

@�

*
1

3

v3
k

�2

+
Gþ �hvki @g

L
2

@�

#
¼ 0; (35)

or equivalently,

@gL2
@�

¼ 1

hvki
@

@�

*
1

3

v3
k

�2

+
G: (36)

It is difficult to obtain a useful closed-form solution to this
equation in the general case, and so we take the subsidiary
limit 	 ! 0, in which case it can be shown,
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@gL2
@�

�� "

�2
0

G

0
@1þ 	

H
d�J c cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �B=B0

p
H
d�J c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �B=B0

p
1
A:
(37)

Here, �0 ¼ zieB0=ðmicÞ is the on-axis cyclotron fre-
quency, 	 ¼ r=R0 is the inverse aspect ratio, and R0 is
the plasma major radius. Thus, neglecting terms of order

	3=2, we can perform the � integration directly to show
gL2 ��ð�"=�2

0ÞGþ cð"; rÞ, where c is an integration con-
stant. By choosing the flux-surface average of the density
moment to be zero, we can eliminate c to find

fL2 � ð�2"þ�B0Þ
�2

0

G	 cos�: (38)

The accuracy of this result has been verified numerically
with the NEO code [17]. We note in passing that a similar
result is obtained in the Pfirsch-Schlüter regime even
though the details of the calculation are quite different.
The similarity, ultimately, arises from properties of the
general solvability condition [see Eq. (96) in Ref. [17]],
which invariably removes a weighted � average of the
inhomogeneous terms.

Next, the same formal procedure, when applied to the
case of the full nonlinear operator, gives the significantly
different result

fNL2 �ð�2"þ�B0Þ
�2

0

G	cos�þ½ð2=3Þ"��B0�
�2

0

F2

f0
: (39)

This approximate result confirms the speculation made
about the general case, namely that the contribution from
the linear operator vanishes on the appropriate average,
which in the banana regime is simply an unweighted �
average. Also, in the banana regime, the linear contribution
is Oð	Þ smaller than the nonlinear one.

Summary.—The implication is that if one attempts to
improve upon standard neoclassical theory by retaining
second- or higher-order poloidal ion gyroradius effects, a
spurious solution will be obtained if the linearized collision
operator is used. We have shown explicitly that in the
banana regime the collisional contribution to the second-
order solution is correctly given only when Cðf1; f1Þ is
retained. Indeed, new analytic gyrokinetic formulations
already exist for which this term is included [8].
Therefore, in general, nonlinear corrections to the collision
operator must be accurately retained in full-f and

hybrid fluidþ �f numerical simulations in order to avoid
the type of spurious solution we have demonstrated in this
Letter.
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