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The three-dimensional patterns of surface wrinkling on a core-shell soft sphere are investigated through

buckling and postbuckling analyses under differential tissue growth or shrinkage. With increasing

deformation, the sphere first exhibits a buckyball-like wrinkling pattern and then undergoes a wrinkle-

to-fold transition into labyrinth folded patterns, in agreement with experimental observations. This

transition involves dynamic movement, rotation, and coalescence of polygons formed during the initial

buckling.
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Soft materials such as elastomers and polymeric gels are
promising a wide range of applications from optical sens-
ing or actuation to biomedical engineering [1]. While these
materials can swell or shrink in response to external stimuli
(e.g., pH, humidity, and temperature), soft biological tis-
sues such as muscles and arteries undergo growth and
atrophy under various physiological or pathological con-
ditions. Mechanics of soft materials associated with swell-
ing or shrinking has attracted considerable attention [2].
Much experimental effort has been directed toward the
synthesis of core-shell structured hydrogels [3], with po-
tential applications for drug delivery, enzyme supports, and
biosensors. In such structures, the differential swelling
or shrinking that originates from nonuniform physical
and chemical properties or physiological changes can
elicit stresses and trigger various morphological instabil-
ities [4,5].

The phenomenon of surface wrinkling, as exemplified in
nature by shriveled apples, dried raisins and dehydrated
peas, is, on one hand, a nuisance to be avoided in many
engineering applications and, on the other hand, a useful
way of achieving unusual physical properties such as
superhydrophobicity and self-cleaning. Recently, the buck-
ling and postbuckling behaviors of a planar stiff film rest-
ing on a soft substrate subjected to in-plane compression
[6–9] or lifted by a probe [10] have been studied both
experimentally and theoretically. Because of topological
constraints, the buckling patterns on curved surfaces can be
quite different from those on planar surfaces [11], and
three-dimensional (3D) surface buckling and postbuckling
behaviors of a nonplanar layered structure are still elusive.
In this Letter, we investigate the dynamic evolution of
surface wrinkling patterns on a soft sphere with hard skin
induced by tissue growth or shrinkage. The problem under
consideration involves a spherical core-shell configuration
which can model, for example, growing tumors, hydrogel
core-shell particles, and many types of fruits.

We analyze the inhomogeneous deformation, buckling
and postbuckling behaviors of a soft core-shell sphere
within the framework of finite elasticity. The volumetric
growth model originally established for biological tissues
[12–14] is adopted to describe the inhomogeneous expan-
sion or shrinkage. We use the spherical coordinate system
X ¼ ðR;�;�Þ for the initial configuration and x ¼
ðr; �;�Þ for the current configuration, as shown in Fig. 1.
According to the volumetric growth theory [12], the

deformation gradient F ¼ @x=@X can be decomposed
multiplicatively as F ¼ A �G, where G denotes the
growth tensor describing the addition (growth) or reduction
(shrinkage) of materials and A is the elastic deformation
tensor, which ensures the compatibility and continuity of
deformation. For the sake of simplicity, here we assume
that the materials swell or shrink isotropically. Without
loss of generality, we further assume that shrinking takes
place only in the core and can be characterized by an
isotropic tensorG ¼ gI, where g (0< g< 1) is a constant
and I is the unit tensor. The relative magnitude of shrink-
ing is measured by �g ¼ 1� g, hereafter referred to as the
shrinking factor. In view of the spherical symmetry of the
system, the elastic deformation tensor can be expressed as
A ¼ diagð�1; �2; �3Þ, where �1 ¼ g�1@r=@R and �2 ¼
�3 ¼ � ¼ g�1r=R. In the case of simultaneous swelling or
shrinking of the shell and the core, both the method of

FIG. 1 (color). Shrinking of a soft sphere with a hard skin
layer: (a) initial configuration and (b) current configuration.
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analysis and the conclusions would be very similar to the
case under study.

The incompressible neo-Hookean model with strain en-
ergy function W ¼ 1

2�ð�2
1 þ �2

2 þ �2
3 � 3Þ is used to

characterize the nonlinear constitutive behavior of the
material, where� is the shear modulus. Elastic incompres-
sibility requires detA ¼ 1, which leads to J ¼ detF ¼
detG. The total potential energy of the system is

U ¼
Z
�
J½W � pðdetA� 1Þ�d�; (1)

where p is a Lagrangian multiplier and � the initial
volume occupied by the sphere. Minimization of Eq. (1)
yields the mechanical equilibrium for the system [15].

The incremental deformation theory accounting for
growth or shrinkage effect [13,16] will be utilized to
analyze the morphological stability of the core-shell
sphere. The stability analysis proceeds by solving the

incremental equilibrium equation div _S0 ¼ 0 in conjunc-
tion with the perfect bonding conditions at the core-shell

interface, where _S0 is the incremental nominal stress.
The wrinkling mode of such a soft sphere can be well

characterized by a spherical harmonic function Ym
l ð�;�Þ of

degree l and order m, which characterize the wrinkling
modes in the longitudinal and latitudinal directions, respec-
tively [17]. Combining this with the incremental equilib-
rium equation leads to an ordinary differential equation
determining the critical condition of surfacewrinkling [15].

Let �gcrit denote the critical shrinking factor at the occur-
rence of surface wrinkling. The corresponding surface pat-
tern after buckling is described by its critical mode number,
lcrit, which minimizes the total energy of the system among
all possible modes. Figure 2 shows good agreement be-
tween the theoretical solutions [15] and our numerical
results of finite element method (FEM). It is found
that �gcrit increases with the shell thickness H [Fig. 2(a)].
Since the Föppl–von Kármán number �� ðA=HÞ2, which

characterizes the relative importance of stretch and bending
rigidities [18], the critical shrinking factor �gcrit decreases
as � increases. In addition, a larger shrinking factor �gcrit
is needed to destabilize spheres with a smaller ratio,
�s=�c, between the shear moduli of the shell and the
core [Fig. 2(b)]. It is shown that lcrit can be lowered either
by increasing H=A or �s=�c.
Besides the surface buckling pattern, the characteristic

of dynamic morphological evolution in the subsequent
postbuckling deformation is also of great interest [19] but
has received less attention previously. In order to inves-
tigate the spatial topographical evolution during postbuck-
ling, we further perform 3D FEM simulations in a wide
range of geometric and material parameters by using a
pseudodynamic solution method [14]. As will be shown
below, this method can well capture the complicated evo-
lution process from initial isotropic deformation, buckling,
to postbuckling with large deformation.
The displacement and elastic energy density distribu-

tions on the shell surface are depicted in Figs. 3(a)–3(h),
respectively. Initially, the sphere shrinks isotropically and
the energy distribution is uniform [Figs. 3(a) and 3(e)].
When the shrinkage reaches a critical value, the sphere
suddenly bifurcates into a periodic dimple structure.
Correspondingly, the energy distribution in the sphere
evolves into a discrete but periodic profile. To further
investigate the buckling mechanism, Fig. 4 plots the nor-
malized total energy �U of the system as a function of the
shrinking factor �g. The energy variation from FEM simu-
lation is in good agreement with the theoretical solution
[Eq. (1)] before the occurrence of buckling (region I).
When the shrinkage exceeds a critical value, �gcrit, the
spherical surface buckles and the system enters into
region II as a consequence of energy minimization. With
further shrinking, a pattern consisting of regular pentagons
and hexagons characterizes the surface of the sphere, as
shown in Figs. 3(b) and 5(a). Our numerical simulations
confirm that this configuration is energetically favorable.

FIG. 2 (color). Dependence of the critical shrinking factor �gcrit (dashed line) and mode number lcrit (solid line and stars) on (a) the
normalized initial shell thickness H=A and (b) the modulus ratio �s=�c. In (a), �s=�c ¼ 10 and in (b) H=A ¼ 0:05. The numerical
results of FEM (stars) agree well with theoretical predictions (solid line).
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Such a pattern is reminiscent of the structure of C60

[Fig. 5(b)] and hence referred to as the buckyball-like
pattern.

As the shrinkage increases further, a second bifurcation
may take place and the system enters into region III
[Fig. 4]. The buckyball pattern from the first bifurcation
breaks into foldlike structures: some polygons narrow
into troughs, while others merge with their neighbors
[Fig. 3(c)]. Correspondingly, the periodicity of energy
distribution is also broken [Fig. 3(g)]. During the postbuck-
ling process, the troughs deepen and the ridges sharpen,
leading to a wrinkle-to-fold transition. In comparison with
the buckyball pattern, the folding patterns can release more
elastic strain energy in this stage, as shown in Fig. 4. This
surface morphological evolution as �g is increased involves
the movement and rotation of ridges, just like the evolution
of bonds during defect formation in fullerenes. Finally, the

FIG. 4 (color). Variation of the normalized total potential
energy �U ¼ U=ð�cA

3Þ with the shrinking factor �g. In region I,
the sphere shrinks isotropically. Before buckling, the theoreti-
cally calculated total energy (green dashed line) fits well with
numerical simulations (solid line). In region II, the system
buckles into a buckyball configuration to lower energy.
In region III, a second bifurcation takes place, corresponding
to a wrinkling-to-fold transition. Red dashed line means no
secondary bifurcation. Here, we took A ¼ 100, B ¼ 104, and
�s=�c ¼ 10.

FIG. 3 (color). FEM simulations and experimental observa-
tions of surface wrinkling in a core-shell sphere. The left column
shows the evolution of surface morphology with increasing
shrinkage: (a) isotropic shrinking, (b) buckyball pattern,
(c) deformed polygons, and (d) labyrinth topography. The
middle column illustrates the evolution of energy density on
the spherical surface: (e)–(h) are the energy density distributions
corresponding to (a)–(d), respectively. In the calculation, we
took A ¼ 100, B ¼ 104, and �s=�c ¼ 10. The right column
shows the surface pattern transition of a gradually dehydrated
green pea in a dry environment. Time for (i)–(l) is 0, 2, 3, and
5 hours, respectively.

FIG. 5 (color). Buckyball and labyrinthine patterns of surface
wrinkling. (a) Pentagons and hexagons incurred by the first
bifurcation and (b) the structure of C60. Postbuckling of a
core-shell sphere: (c) buckyball pattern and (d) furrowed topog-
raphy. (e) Evolutions of the surface morphologies of spheres
with different values of �s=�c. In (a), A ¼ 100, B ¼ 104, and
�s=�c ¼ 10; in (c) and (d), A ¼ 100, B ¼ 106, and �s=�c ¼
10; in (e), A ¼ 100 and B ¼ 104.
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spherical surface evolves toward a labyrinthine pattern
[Fig. 3(d)], corresponding to the further localization of
elastic strain energy [Fig. 3(h)]. Our FEM simulations
also demonstrate that increasing either the shell thickness
or the modulus ratio �s=�c will reduce the mode number
(or enhance the wavelength) of the 3D surface patterns, as
shown in Figs. 5(c)–5(e). For several representative
values of �s=�c, Fig. 5(e) shows the surface morphologi-
cal evolution of spheres with increasing �g during
postbuckling.

To corroborate our theoretical findings, we have experi-
mentally observed the drying of green peas, which have a
core-shell structure consisting of a spherical seed coated by
a harder testa layer, just like the configuration shown in
Fig. 1. In the initial state, the fresh peas have a high content
of water and a smooth surface [Fig. 3(i)]. Then they are
gradually dehydrated in a dry environment. Because of
higher water content in the core, the seed has a larger
shrinking factor than the coat, yielding a compressive
stress in the shell layer. Figures 3(j)–3(l) show representa-
tive examples for comparison with our theoretical predic-
tion. It is seen that differential shrinkage can cause
multiple steps of symmetry breaking, giving rise to a 3D
pattern on the curved surface. More specifically, the pea
first shrinks isotropically, followed by buckyball-like buck-
ling and then folding. These observations corroborate well
with our theoretical predictions.

In summary, we have investigated surface buckling and
morphological transition of a core-shell soft sphere by
using a volumetric growth theory of finite deformation.
The critical buckling condition and induced patterns are
found to be sensitive to the shell thickness (represented by
the Föppl–von Kármán number) and mechanical properties
of the sphere. Both numerical simulations and experimen-
tal observations demonstrate that the sphere tends to buckle
into a buckyball pattern at the initial bifurcation, followed
by a wrinkle-to-fold transition that leads to the formation
of a labyrinthine topography on the curved surface at
subsequent bifurcations. Understanding the nonlinear
buckling and morphological transition of soft spheres is
not only beneficial for applications in medical engineering
but also promises interesting fabrication routes to multi-
functional surfaces.
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