
Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States

Iryna Omelchenko,1,2 Yuri Maistrenko,2,3 Philipp Hövel,1 and Eckehard Schöll1
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We discuss the breakdown of spatial coherence in networks of coupled oscillators with nonlocal

interaction. By systematically analyzing the dependence of the spatiotemporal dynamics on the range and

strength of coupling, we uncover a dynamical bifurcation scenario for the coherence-incoherence

transition which starts with the appearance of narrow layers of incoherence occupying eventually the

whole space. Our findings for coupled chaotic and periodic maps as well as for time-continuous Rössler

systems reveal that intermediate, partially coherent states represent characteristic spatiotemporal patterns

at the transition from coherence to incoherence.
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Understanding the dynamics on networks is at the heart
of modern nonlinear science and has a wide applicability to
various fields [1,2]. Thus, network science is a vibrant,
interdisciplinary research area with strong connections to
physics. For example, concepts of theoretical physics like
the Turing instability, which is a known paradigm of
nonequilibrium self-organization in space-continuous sys-
tems, have recently been transferred to complex networks
[3]. While spatially extended systems show pattern forma-
tion mediated by diffusion, i.e., local interactions, a net-
work also takes into account long-range and global
interactions yielding more realistic spatial geometries.

Network topologies like all-to-all coupling of, for in-
stance, phase oscillators (Kuramoto model) or chaotic
maps (Kaneko model) were intensively studied, and nu-
merous characteristic regimes were found [4–6]. In par-
ticular, for globally coupled chaotic maps they range—for
decreasing coupling strength—from complete chaotic
synchronization via clustering and chaotic itineracy to
complete desynchronization. The opposite case, i.e.,
nearest-neighbor coupling, is known as lattice dynamical
systems of time-continuous oscillators or coupled map
lattices if the oscillator dynamics is discrete in time.
These kinds of networks arise naturally as a discrete ap-
proximation of systems with diffusion and have also been
thoroughly studied. They can demonstrate rich dynamics
such as solitons, kinks, etc., up to fully developed spatio-
temporal chaos [6–10].

The case of networks with nonlocal coupling, however,
has been much less studied in spite of numerous applica-
tions in different fields. Characteristic examples pertain to
neuroscience [11,12], chemical oscillators [13,14], electro-
chemical systems [15], and Josephson junctions [16]. A
new impulse to study such networks was given, in particu-
lar, by the discovery of so-called chimera states [17,18].
The main peculiarity of these spatiotemporal patterns is

that they have a hybrid spatial structure, partially coherent
and partially incoherent, which can develop in networks of
identical oscillators without any sign of inhomogeneity.
In this Letter, we discuss the transition between coherent

and incoherent dynamics in networks of nonlocally
coupled oscillators. We start with coupled chaotic maps

ztþ1
i ¼ fðztiÞ þ

�

2P

XiþP

j¼i�P

½fðztjÞ � fðztiÞ� ; (1)

where zi are real dynamic variables (i ¼ 1; . . . ; N, N � 1
and the index i is periodic mod N), t denotes the discrete
time, � is the coupling strength, P specifies the number of
neighbors in each direction coupled with the ith element,
and fðzÞ is a local one-dimensional map. We choose f as
the logistic map fðzÞ ¼ azð1� zÞ and fix the bifurcation
parameter a at the value a ¼ 3:8. This choice yields cha-
otic behavior of the map f with positive Lyapunov expo-
nent � � 0:431.
Results of direct numerical simulation of the model (1)

in the two-parameter plane of the coupling radius r ¼ P=N
and coupling strength � are presented in Fig. 1. This figure
reveals the appearance of regions of spatial coherence,
shown in shading (color), at an intermediate radius of
coupling. Alternatively, if the oscillators are uncoupled
(r ¼ 0) or coupling is only local (r ¼ 1=N), the network
displays high-dimensional space-time chaos [6]. In the
opposite situation, when the coupling is all-to-all (r ¼
0:5), chaotic synchronization occurs: The oscillators be-
have identically but chaotically in time following the dy-
namics of f [5,6]. The chaotic synchronization (hatched
region k ¼ 0) persists for smaller r or � up to the blowout
bifurcation [19] indicated by the curve BB, where the
synchronized state loses transverse stability; i.e., the
dynamics becomes desynchronized. The spatially
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homogeneous state represents the simplest example of
coherent dynamics.

In general, we call a network state zti, i ¼ 1; . . . ; N,
coherent on the ring S1 as N ! 1 if for any point x2S1

the limiting value

lim
N!1 lim

t!1 sup
i;j2UN

�
ðxÞ
jzti � ztjj ! 0 for � ! 0; (2)

where UN
� ðxÞ ¼ fj:0 � j � N; jj=N � xj< �g denotes a

network neighborhood of the point x. If the limit (2) does
not vanish for � ! 0, at least for one point x, the network
state is considered incoherent.

Geometrically, coherence means that in the thermody-
namic limit N ! 1 snapshots of the state zti approach a
smooth profile zðx; tÞ of the spatially continuous version of
Eq. (1) given by

ztþ1ðxÞ ¼ fðztðxÞÞþ �

2r

Z xþr

x�r
½fðztðyÞÞ� fðztðxÞÞ�dy: (3)

According to the definition given above, a transition from
coherence to incoherence occurs when the respective so-
lution profile ztðxÞ becomes discontinuous. Note that for
networks of phase oscillators the property of coherence and
incoherence can also be established with use of the notion
of a local order parameter [20,21].

Regions of coherence and typical shapes of the respec-
tive coherent states zti are shown in Fig. 1 as shaded (color)
tongues and insets, respectively. A coherent state has a
smooth profile characterized by the number of maxima,
i.e., the wave number k. Only regions for wave numbers

k ¼ 1, 2, and 3 are shown. Further decrease of r yields
additional thin higher-order regions following a period-
adding cascade k ¼ 4; 5; . . . . Inside the regions, the states
are coherent in space and periodic in time and undergo a
period-doubling cascade of bifurcations in time as r or �
decrease. In the parameter space between the coherence
regions, the network dynamics remain coherent but not
periodic anymore. The states alternate chaotically between
the adjacent k states and thus exhibit chaotic itineracy
[6,22]. The combination of period adding in space and
period doubling in time represents a remarkable feature of
networks of coupled chaotic oscillators with nonlocal
coupling.
A typical scenario of the coherence-incoherence transi-

tion is illustrated in Fig. 2, where we fix the coupling radius
r ¼ 0:32 and decrease the coupling strength � along the
vertical line with triangles in Fig. 1. First, in Fig. 2(a),
the solution profile zti is clearly smooth for� ¼ 0:43. Thus,
the network dynamics is spatially coherent. For smaller
�, the profile zti sharpens up and, at some value � ffi 0:40,
loses smoothness in two points x1 and x2 as shown in
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FIG. 2 (color online). Coherence-incoherence bifurcation for
coupled chaotic logistic maps for fixed coupling radius r ¼ 0:32
(black triangles in Fig. 1). For each value of the coupling
parameter � (decreasing from top to bottom, � ¼ 0:43, 0.4,
0.32, 0.3, 0.2, and 0.1, respectively), snapshots (left columns) and
space-time plots (right columns) are shown. Other parameters
are as in Fig. 1.
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FIG. 1 (color online). Regions of coherence for system (1) in
the ðr; �Þ parameter plane with wave numbers k ¼ 1, 2, and 3.
Snapshots of typical coherent states zi are shown in the insets.
The color code inside the regions distinguishes different time
periods of the states. The coherence-incoherence bifurcation
(CIB) curve separates regions with coherent and incoherent
dynamics. In the hatched and shaded (color) regions below
CIB, two-cluster incoherent states exist. Completely synchro-
nized chaotic states exist in the light hatched region bounded
by the blowout bifurcation curve BB. Parameters: a ¼ 3:8 and
N ¼ 100.
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Fig. 2(b). This is a bifurcation point for the coherence-
incoherence transition: Beyond this parameter value, the
wavelike profile zti splits up into upper and lower branches,
and two narrow boundary layers of incoherence are born
around the points x1 and x2 [shaded yellow stripes �1 and
�2 in Fig. 2(c)]. The incoherence stripes become wider
with further decrease of � [Fig. 2(d)], and, eventually,
the dynamics becomes completely incoherent [Figs. 2(e)
and 2(f)].

In our numerical simulations, no coherent states were
found below the bifurcation parameter value � ffi 0:40. In
contrast, numerous hybrid states arise, which are coherent
on some intervals of the ring S1 and incoherent on the
complementary intervals. Typical examples of these par-
tially coherent states are shown in Figs. 2(c) and 2(d). In
the figure, black diamonds mark a threshold within the
incoherent regions: If the initial value for a chosen oscil-
lator is located above (below) this diamond, with all other
oscillators unchanged, it will be attracted by the upper
(lower) branch. This implies that within the incoherent
intervals �1 and �2 any combinations of the upper
and lower states—the so-called mosaic [8] or skeleton
pattern [10]—are admissible and can be realized by an
appropriate choice of the initial conditions. The
coherence-incoherence transition is illustrated by the local
order parameter Ri shown in Fig. 3(a) for the snapshots
depicted in Fig. 2. It is defined as (cf. Ref. [21])

Ri ¼ lim
N!1

1

2�ðNÞ
��������

X
j jN� i

Nj��

eic j

�������� ði ¼ 1; . . . ; NÞ; (4)

with the phase c j introduced by the mapping sinc j¼
ð2zj�maxjzj�minjzjÞ=ðmaxjzj�minjzjÞ and �ðNÞ!0

for N ! 1, such that a spatial half-period oscillation is
mapped onto the polar angular interval ½��=2; �=2�. Ri is
close to unity for the coherent state and decreases in
regions of spatial incoherence. For the two cases of com-
plete incoherence [Figs. 2(e) and 2(f)], the local order
parameter is much smaller than unity and fluctuating
strongly as a signature of spatial chaos. In the case of
very small coupling [Fig. 2(f)], the values of zi are more

spread out, and hence Ri varies less strongly between
neighboring sites and is on average larger than in
Fig. 2(e).
As is illustrated in the space-time plots of Fig. 2, the

temporal dynamics before and after the coherence-
incoherence bifurcation remains periodic up to very small
coupling, when it is chaotic [Fig. 2(f)]. The system’s
complexity results from the fact that the bifurcation gives
rise to a huge multistability of partially coherent states as
N ! 1. Indeed, the number cN of different partially co-
herent states born in the bifurcation is cN ¼ 2dN , where d
is the fraction of oscillators in the incoherent part [d ¼
�1 þ �2 in the case of two incoherence intervals as in
Figs. 2(c) and 2(d)]. It follows that the number of different
states grows exponentially fast with N, and the spatial
entropy h, which is defined as h ¼ limN!1ð1=NÞ lncN , is
positive and equals h ¼ d ln2. Positive spatial entropy
means that the system displays spatial chaos [7–10], i.e.,
sensitive dependence on space coordinates. Therefore, the
coherence-incoherence bifurcation results instantly in the
appearance of spatial chaos that develops first at narrow
incoherence intervals and, with decreasing �, spreads onto
the whole ring. Thus a chimeralike state of coexisting
coherent and incoherent regions arises as a transitional
state in the coherence-incoherence bifurcation scenario.
However, in contrast to previously reported chimera states
in time-continuous systems [17,18], the temporal behavior
is periodic rather than chaotic, and the complexity arises
due to the huge variety of multistable incoherent states
corresponding to permutations of the sequence of upper
and lower local states. With further decrease of �, the
chimera states disappear, giving rise to completely inco-
herent behavior.
To identify the parameter range for partially coherent

states, we define a mosaic of zti as a symbolic sequence of

‘‘�’’ or ‘‘þ’’ if the value zi belongs to the lower or upper
branch of the solution profile, respectively. Hence, states as
in Fig. 2(b) are given by the mosaic of the form ( � � � �
�þþ� � � þ þ��� � � ). Therefore, they may be con-
sidered as two-cluster states with the ratio of (n1:n2),
where n1 and n2 are the numbers of � and þ (n1 þ n2 ¼
N), respectively. The ratio (n1:n2) indicates the level of
asymmetry of the solution zti, which is important for its

stability. Indeed, as is illustrated in Fig. 3(b) for r ¼ 0:35,
the symmetric solution (50:50) has the widest stability
interval � 2 ð0:189; 0:41Þ. As the asymmetry grows, the
stability interval shrinks, and the solution with the mosaic
ratio (35:65) has the shortest stability interval � 2
ð0:314; 0:317Þ. Two-cluster solutions with larger asymme-
try cannot be stabilized anymore. The states with more
complex mosaics, examples of which are presented in
Figs. 2(c)–2(e), are characterized by more involved mecha-
nisms of stability.
To test if the coherence-incoherence bifurcation is a

universal scenario, we have also investigated nonlocally
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FIG. 3 (color online). (a) Local order parameter for r ¼ 0:32
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400). (b) Regions of stability for the two-cluster solutions with
different asymmetries (n1:n2) as a function of � for r ¼ 0:35.
Other parameters are as in Fig. 1.
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coupled networks with different local dynamics. Figure 4
shows the coherence-incoherence transition for nonlocally
coupled logistic maps (1) in the periodic regime [a ¼ 3:2,
period 2, Fig. 4(a)] and for nonlocally coupled chaotic
Rössler systems

_x i¼�yi�ziþ �

2P

XiþP

j¼i�P

ðxj�xiÞ; _yi¼xiþayi;

_zi¼bþziðxi�cÞ ði¼1; . . . ;NÞ
(5)

[Fig. 4(b)]. As can be seen from the snapshots, both models
display a transition from spatial coherence to incoherence,
as the coupling strength � decreases, according to the
scenario described above. Since network (5) is time-
continuous, the oscillators within the incoherence intervals
are not merely located at an upper or lower branch of the
solution profile but vary continuously. This gives rise to
chaotic temporal dynamics in the incoherent intervals,
which resembles known chimera states [17,18]. We con-
clude that chaotic chimera states typically arise in the
nonlocally coupled Rössler systems, similar to nonlocally
coupled Kuramoto-Sakaguchi phase oscillators [18].

In conclusion, we have identified a novel mechanism for
the coherence-incoherence transition in networks with
nonlocal coupling of variable range. It consists in the
appearance of multistable chimeralike states. We have
found similar bifurcation scenarios for coupled maps
with both chaotic and periodic local dynamics as well as
for time-continuous systems. This indicates a common,
probably universal phenomenon in networks of very differ-
ent nature, due to nonlocal coupling.
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FIG. 4 (color online). Snapshots with decreasing coupling
strength �: coherence-incoherence transition for a ring of
(a) 100 coupled periodic logistic maps (a ¼ 3:2) for a coupling
radius r ¼ 0:1 and (b) 100 nonlocally coupled Rössler systems
(a ¼ 0:42, b ¼ 2, c ¼ 4) with r ¼ 0:3.
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