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This work analyzes the parameter space of a discrete ratchet model and gives direct connections

between chaotic domains and a family of isoperiodic stable structures with the ratchet current. The

isoperiodic structures, where larger currents are usually observed inside, appear along preferred direction

in the parameter space giving a guide to follow the current. Currents in parameter space provide a direct

measure of the momentum asymmetry of the multistable and chaotic attractors times the size of the

corresponding basin of attraction. Transport structures are shown to exist in the parameter space of the

Langevin equation with an external oscillating force.
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The description of the ratchet transport of particles in
nature has become an actual and largely studied problem
due to the possibility of obtaining transport properties
without external bias. Intuitively such transport is due to
the rectification of an external net-zero force to obtain
directional motion of particles in spatially periodic media.
To obtain ratchet transport, spatiotemporal symmetries
must be broken in the system [1]. Ratchets have become
natural candidates for describing transport phenomena in
Brownian [2,3] and molecular motors [4], cold atoms [5],
migration of bacteria [6], cell mobility in cancer metastasis
[7], granular gas [8], fluid transport [9], and in more
general areas like classical and quantum physics [10],
chemistry [11] and biophysics [12]. These are just some
references in the distinct areas, since the actual literature
related to ratchets is enormous.

A common feature of interest in all areas of ratchets
applications is the understanding, achievement, and control
of transport. A priori, dynamical variables and parameters
of the system (like temperature, dissipation, noise inten-
sity, external forces, etc.), which control the dynamics, are
deeply interconnected so that it is very hard to make
general statements about the ratchet current (RC) as a
function of the parameters. The precise determination of
the nature of transport in unbounded systems is still not
fully understood; thus, it is very desirable to achieve and/or
recognize ‘‘patterns’’ or ‘‘structures’’ in the parameter
space which are directly connected to transport properties.
Is it even more attractive if such transport structures
present universal features observed in a large class of
dynamical systems.

This Letter analyzes the parameter space of a ratchet
model and shows the relation between ratchet currents with
a family of isoperiodic stable structures (ISSs) and chaotic
domains in parameter space. A remarkable complete con-
nection between parameters of the system and the RC is
given, and therefore general clues for the origin of directed
transport. To mention an example, one of the ISSs observed

here, which has a shrimp-shaped form [see Fig. 3(c)], has
already appeared in the parameter space of generic dy-
namical systems and applications. Such shrimps were
found to be generic structures in the parameter space of
dissipative systems like maps [13,14] and continuous
models [15], among others. Very recently they were also
observed in experiments with electronic circuits [16]. We
show here that such shrimp-shaped structures are also
essential to directed transport in nature. As for shrimps
[13], the ISSs described here are Lyapunov stable islands
with dynamics globally structurally stable.
In order to show generic properties of the RC in the

parameter space, we use a map M which presents all
essential features regarding unbiased current [17]

M:

�
pnþ1¼�pnþK½sinðxnÞþasinð2xnþ�Þ�;
xnþ1¼xnþpnþ1;

(1)

where pn is the momentum variable conjugated to xn,
n ¼ 1; 2; . . . ; N represents the discrete time and K is the
nonlinearity parameter. The dissipation parameter �
reaches the overdamping limit for � ¼ 0 and the conser-
vative limit for � ¼ 1. The ratchet effect appears due to the
spatial asymmetry, which occurs with a � 0 and � � m�
(m ¼ 1; 2; . . . ), in addition to the time reversal asymmetry
for � � 1. The RC of the above model was studied [17] for
fixed K ¼ 6:5 in the dissipation interval 0 � � < 1.

Figure 1 shows the RC ¼ 1
M

P
M
j¼1½1N

PN
n¼1 p

ðjÞ
n � (colors)

as a function of the dissipation parameter � and the non-
linearity parameter K, where M is the number of initial
conditions. A remarkable complex structure of colors is
evident, where each color is related to a given value of the
current (see color bar). Black colors are related to close to
zero currents; green to white colors (gray to white in the
gray scale) are related to increasing positive currents while
red to yellow colors (gray to white in the gray scale) related
to increasing negative currents. The white straight line
at K ¼ 6:5 corresponds to the case analyzed recently
[17]. Three main regions with distinct behaviors can be
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identified: (i) a large ‘‘cloudy’’ background, identified as A
in Fig. 1, mixed with black, red, and green colors (black,
gray to light gray), showing a mixture of zero, small
negative and positive currents, respectively; (ii) several
structures with sharp borders (the ISSs) and distinct colors,
which are embedded in the cloudy background region and
are identified in Fig. 1 as BL, CL, andDL (L is an integer or
rational number); (iii) strong positive and negative currents
(region E), with not well defined borders which occur close
to the conservative limit � ¼ 1. Next we explain in more
detail these distinct regions by analyzing other quantities.

Figure 2 shows the parameter space (�, K) for the
period q from the orbits. Periodic stable motion is re-
stricted to well-defined structures while the black back-
ground is related to the chaotic motion. This was checked
by determining (not shown) the parameter space for the
largest Lyapunov exponent (LE). Zero and negative LEs

are related to the periodic motion and positive LEs to the
black regions of Fig. 2. This already allows us to associate
the cloudy region A from Fig. 1 with the chaotic motion.
Thus the small portions of negative or positive currents
[red and green (gray) clouds] are due to the chaotic
transport, consequence of the asymmetry of the chaotic
attractor [5].
Map (1) is periodic in x with period 2�. Thus the

condition for a period-q orbit is
Pnþq�1

i¼n pi ¼ 2�m, with
integer m ¼ . . . ;�2;�1; 0; 1; 2; . . . which represent the
net number of left (negative) or right (positive) 2� jumps
in x over the period. The mean momentum for a given

period q is then �pq ¼ Pnþq�1
i¼n pi=q ¼ 2�m=q which can

be written as 2�L, so that L ¼ m=q. Therefore L, which
gives �pq in units of 2�, can assume fractional values

(positive or negative). All ISSs from Fig. 1 coincide
with the sharp borders of Fig. 2 and a direct connection
between periodic stable motion and the RC is given.
Regarding these sharp structures we observe three different
ISSs: BL composed by the sequence L ¼ 1; 2; . . . of
dominant diagonal structures with main period q ¼ 1 [see
green (gray) main regions in Fig. 2] which extend them-
selves along a large range of K values. As K increases and
� decreases, inside each structure BL we observe 1� 2n

[green ðgrayÞ ! blue ðdark grayÞ ! yellow ðwhiteÞ ! . . . ]
doubling cascades bifurcations. Comparing to Fig. 1, we
observe that the current inside each structure BL is inde-
pendent of the period q and thus, on the bifurcation
points. At the doubling bifurcation cascades 1� 2n we
observed that m ! 2m so that L ( ¼ m=q ¼ �pq=2�)

remains constant inside each structure BL. Even though
different isoperiodic BL structures have the same period,
RCs increase with L and �. Structures BL are very similar
to the cuspidal singularities [18]. Since the boundary of
structures BL are born at period q ¼ 1, they can be calcu-
lated analytically from the eigenvalues of the Jacobian of
the map (1) after one iteration. Using � ¼ �=2, the fixed

points from (1) can be calculated from pð1Þ ¼ 2�L (L

integer) and 2�Lð�� 1ÞþK½sinðxð1ÞÞþacosð2xð1ÞÞ� ¼ 0.

The solutions are xð1Þj ¼ arctanð�ð�Þ;��ðþÞÞ (j ¼ 1, 2)

and xð1Þs ¼ arctanð�ðþÞ;��ð�ÞÞ (s ¼ 3, 4) where

�ð�Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K½3K þ 8L�ð�� 1Þ�p þ K and �ð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8KL�ð1��Þ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2½3Kþ8L�ð��1Þ�pq

. Substituting

these solutions in the Jacobian of the map (1) we obtain
analytical expressions �ð�;K; LÞ for the two eigenvalues.
When �ð�;K; LÞ ¼ þ1 (born of period 1), we obtain a
relation between �, K, and L where period-1 orbits are
born in parameter space. The solutions for �ð�;K; LÞ �
1 ¼ 0, for all fixed points xð1Þj , are �ðLÞ

1 ¼ 1� 3K=ð8�LÞ
(lower border) and �ðLÞ

2 ¼ 1� K=ð4�LÞ (upper border).

Both curves define exactly, for a given L, the sharp period-
1 BL boundaries of Figs. 1 and 2. The border of the first
large dominant structure B1 is obtained from L ¼ 1, the

FIG. 1 (color online). The RC (see color bar) plotted in the
parameter space (�, K) with a grid of 600� 600 points, a ¼ 0:5,
� ¼ �=2, 105 initial conditions with hp0i ¼ hx0i ¼ 0 inside the
unit cell (� 2�, 2�), and N ¼ 104 iterations.

FIG. 2 (color online). Period-q values in parameter space
(�, K): green (gray): q ¼ 1, blue (dark gray): q ¼ 2, cyan (light
gray): q ¼ 3, yellow (white): q ¼ 4, red (isolated white points)
8 � q � 12, and black for no period. In this case only one initial
condition is used (x0 ¼ 0:5, p0 ¼ 0:3), N ¼ 106 iterations and a
grid of 600� 600 points.
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second one B2 from L ¼ 2, and so on. See white lines

�ðL¼1Þ
1 , �ðL¼1Þ

2 , �ðL¼2Þ
1 , and �ðL¼2Þ

2 in Fig. 2. However, lower

borders �ðLÞ
2 do not match exactly with the simulations

since the basin of attraction related to q ¼ 1 is too small
compared to the chaotic one and the corresponding current
is not observed. This is also exactly what is observed in
Fig. 3 from [17], where the left limits of the L intervals are
inside the chaotic region. Such analytical description of
the boundaries of BL was obtained from expressions for the
eigenvalues in terms of the orbital points. Unfortunately for
higher periods (CL and DL ISSs below) such expressions
are not easy to obtain (if even possible).

The second kind of relevant ISSs, CL, can be visualized
in Fig. 1 close to K ¼ 6:0 and � > 0:5. They also are
ordered in a sequence of structures L ¼ �1;�2; . . . which
approach each other as � increases, defining a direction
in the parameter space obtained by the straight line � ¼
0:2845K � 0:994 925, along which negative currents in-
crease [see dashed line in Fig. 3(a)]. The main period of
each CL is q ¼ 2 (blue, dark gray) [Fig. 3(b)] but, inside
each structure, period-doubling cascades bifurcations ap-
pear when going to the border of the structures, where the
chaotic region is reached. For clarity Figs. 3(a) and 3(b)
present the current and period as a magnification for these
structures. Again we observe that current increases (in
modulus) along the sequences as � increases.

The last observed ISSs, DL, appear embedded in the
cloudy chaotic background and present the well-known
shrimp-shaped form. For example, three connected
structures (D�1) appear in the interval 10<K < 12 and

0:1< �< 0:4 [see also Fig. 3(c)]. Another example is
demarked in Fig. 1 by D�1=2. These structures have a

main body with period q ¼ 2 and a succession of domains
related to period-doubling route to chaos. They are also
distributed in sequences along preferred direction in the
parameter space, as can be seen by looking carefully at
Fig. 1, where many shrimp-shaped ISSs are hidden behind
the dominant BL structures. Such preferential directions in
parameter space appear to be general properties of shrimp-
shaped ISSs (see [13]) which are abundant in the parameter
space, as shown in the magnifications in Figs. 3(c) and 3(d).
As the parameter space is searched further and further for
finer domains, a large amount of distinct ISSs appear,
usually well organized and sometimes even connected
to each other [see the connected shrimp-shaped ISSs in
Fig. 3(c)]. Connected ISSs have the same RC.
The region E presents larger currents close to � ¼ 1

with not well-defined borders. We start by mentioning that
the parameter space for the largest LE (not shown here) in
this region is positive and thus totally chaotic. We also
clearly see from Figs. 1 and 2 that ISSs with larger L start
to overlap each other when � ! 1 and thus the number of
stable periodic points in phase space increases more and
more. Thus a very rich and complex region E is expected,
with a mixture of a large number of periodic and chaotic
attractors, each one with his own basin of attraction. Such
multistability regions were analyzed for the kicked rotor in
the beautiful works of [19,20]. It is interesting to observe
that apparently the periodic structures are not directly
responsible for the currents since large negative RCs are
expected at the accumulation of the C�1, C�2 . . . sequence,
for example, but current reversal occurs close to � ! 1
[see green (gray) region in Fig. 1 at the end of this
sequence]. The ‘‘competition’’ between multistable and
chaotic attractors in order to generate the RC is gained
by the larger basin of attraction of chaotic attractors.
Extensive numerical simulations show that close to � ¼ 1
the unsharp borders do not change for larger iteration times
and that the basins of attraction of periodic orbits are very
small compared to the basins of chaotic attractors. This
agrees with some recent works [5,17,21] which suggest
that the RC in this region is due to the mixture of chaotic
motion with tiny island from the conservative case. In fact,
accelerator modes from � ¼ 1 are responsible for the
asymmetry of chaotic attractors, generating the currents.
The rich dynamics from regions A, B, C, D, and E from
Fig. 1 was also identified for the RC in the parameter
spaces (�, a) and (�, �) and will be published elsewhere.
In order to show that RCs present generic ISSs in the

parameter space of a more general class of dynamical
systems, we analyze the zero temperature Langevin equa-
tion: €xþ � _x� 5:0½sinðxÞ þ 0:7 cosð2xÞ� � Kt sinðtÞ ¼ 0.
Kt is the amplitude of the external time oscillating force,
� is the viscosity, and the ratchet potential is identical from
Eq. (1).

FIG. 3 (color online). Magnifications of Fig. 1 (left) and Fig. 2
(right) showing that the ISSs are abundant inside the chaotic
region and usually organized along specific lines and sometimes
connected to each other.
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Figure 4 shows the RC for three distinct regions in the
parameter space where some ISSs can be identified: in
Fig. 4(b) the green (white) shrimp-shaped; Fig. 4(c) the
green (white) cuspidal and Fig. 4(a) the red (gray) CL

which is a mirror reflection of the ISSs from Fig. 3(a).
This can also be formally recognized by looking at the
corresponding periods in the parameter space (not shown
here) and counting the legs that emanate from the struc-
ture’s main body. Small finite temperatures will slowly
transform the sharp borders of the ISSs into unsharp
borders and simultaneously enlarge them since their attrac-
tors are more stable under noise effects than the chaotic
attractors [22].

Concluding, the essential property to obtain finite RCs is
the momentum asymmetry of attractors in phase space
times the size of the corresponding basin of attraction and

can be expressed as RC ¼ PNa

i¼1hpiiSi, where Na is the

number of attractors, hpii is the mean momentum of
attractor i and Si is the size (normalized) of attractor i.
Thus Figs. 1 and 4 are a direct quantitative measure of
RCs which, together with the above expression, allows
us to naturally connect to the relevant phase-space
dynamics which generates RCs in real systems. We stress
that, as much as shrimps and cusps appear in dynamical
systems, the isoperiodic stable transport structures BL

(cuspidal shaped), DL (shrimp shaped) and CL are generic
patterns which should appear in the parameter space of
dissipative ratchet system, independent of its application in
nature. This was ratified by showing the appearance of
the ISSs in the parameter space of the Langevin equation
with an external unbiased field. It would be very likely to
observe the RCs ISSs in real experiments, as, for example,
(a) in the application of a periodic pressure profile in a
silicon membrane with asymmetric pores which induces a
net motion of the particles from one side of the membrane
to the other [23]. Dissipation parameter changes with
the liquid viscosity and can be plotted against the pores
diameter (nonlinearity K of the ratchet potential) or the
pressure amplitude (external amplitude); (b) in the ratchet

effect in cold rubidium atoms using the asymmetric optical
lattice [24]. Dissipation changes with the Zeeman shift of
the ground state and can be plotted against the spatial
asymmetry of the potential, which is tailored by changing
the magnetic field or the polarizations of counterpropagat-
ing waves.
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