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Three oriented bosonic dipoles are treated by using the hyperspherical adiabatic representation,

providing numerical evidence that the Efimov effect persists near a two-dipole resonance and in a system

where angular momentum is not conserved. Our results further show that the Efimov features in scattering

observables become universal, with a known three-body parameter; i.e., the resonance energies depend

only on the two-body physics, which also has implications for the universal spectrum of the four-dipole

problem. Moreover, the Efimov states should be long-lived, which is favorable for their creation and

manipulation in ultracold dipolar gases. Finally, deeply bound two-dipole states are shown to be relatively

stable against collisions with a third dipole, owing to the emergence of a repulsive interaction originating

in the angular momentum nonconservation for this system.
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The recent advances in producing ultracold dipolar
gases have sparked a great deal of interest in the novel
phases that could be experimentally accessible [1]. Two
key ingredients are the long-range and anisotropic nature
of the dipolar interaction, which can be manipulated by
applying an external electric field. This reorients current
research scenarios in ultracold gases and opens up the
possibility of intriguing phenomena across a broad range
of different fields, from condensed matter physics to ultra-
cold chemistry. Recent experiments [2] have been able to
create a gas of ground-state dipolar molecules and observe
the electric field and geometry dependence of chemical
reactions [3]. Nevertheless, a number of interesting effects
can be expected when the external field is tuned near a
dipole-dipole resonance (i.e., zero-energy dipolar bound
state); this causes the interaction to vary from strongly
repulsive to strongly attractive, in close analogy to the
control through magnetic Feshbach resonances [4].

For nonreactive ground-state dipolar molecules [5], in-
elastic three-dipole scattering will be the main loss mecha-
nism, and these will determine the stability of the dipolar
gas. A recent paper by Ticknor and Rittenhouse [6] pre-
dicts in fact that three-body recombination will be ex-
tremely important for bosonic dipolar gases. Three-body
recombination in this context, DþDþD ! D2 þD, in-
volves three free dipoles colliding to form a dipolar dimer
releasing enough kinetic energy to make the collision
partners escape from typical traps. As Ref. [6] points out,
in the strongly interacting regime universal aspects related
to the Efimov physics tend to dictate the collisional aspects
of such processes. Nevertheless, the persistence of the
Efimov effect for long-range, anisotropic, dipolar interac-
tions remains an open question. The Efimov effect [7] has
proven to have a profound impact in both nuclear and
atomic matter [8,9]. In systems with short-range isotropic
interactions, the Efimov effect manifests when the two-
body scattering length as is much greater than the range of

the interactions r0, through a series of three-body bound

states with energies given by Enþ1=En ¼ e�2�=s0 (n ¼
0; 1; 2; . . . ), where the universal constant s0 ¼ 1:006 24
for identical bosons. Note that low-lying energies, how-
ever, are not universal and typically depend on the details
of the interactions. In ultracold gases, the Efimov effect is
explored near a Feshbach resonance through its impact on
scattering processes [10].
In this Letter, we show that the Efimov effect persists for

dipolar systems and, moreover, that the dipolar interaction
is extremely beneficial for the study of Efimov states. In
particular, we find that the positions of the Efimov reso-
nances (e.g., in energy, in as, etc.), as well as other scat-
tering properties, are universally determined by the two-
dipole physics alone. Moreover, as the strength of the
dipolar interaction increases, Efimov states tend to be
increasingly long-lived. This scenario, introduced by the
dipolar interaction, makes dipolar gases ideal systems for
the creation and manipulation of Efimov states. Following
the method introduced in Ref. [11], we have also derived
the scaling laws for three-body recombination. Finally, we
show the existence of an effective repulsive long-range
interaction between a dipolar dimer and a free dipole,
which can prevent the decay of such dimers.
The hyperspherical adiabatic representation [12] trans-

forms the three-body Schrödinger equation into coupled
hyperradial equations, given (in a.u.) by

�
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where the hyperradius R describes the overall size of the
system and � represents all quantum numbers that label

each channel. In the above equation, � ¼ m=
ffiffiffi
3

p
is the

three-body reduced mass, E is the total energy, and F� is
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the hyperradial wave function in channel �. P��0 and Q��0

are nonadiabatic couplings that drive inelastic transitions,
while the U�ðRÞ are effective potentials that support bound
and quasibound states of the system.

The most stringent challenge in this approach is the
numerical solution of the hyperangular adiabatic eigen-
value equation at fixed values of R in order to determine
the potentials U�ðRÞ and channel eigenfunctions
��ðR;�Þ:
�
�̂2ð�Þþ 15=4

2�R2
þ V̂ðR;�Þ�U�ðRÞ

�
��ðR;�Þ ¼ 0: (2)

Here� represents the set of all hyperangles describing the
system’s internal motion, �2 is the grand angular momen-

tum operator [12], and V̂ ¼ vð~r12Þ þ vð ~r31Þ þ vð ~r23Þ is the
pairwise sum of two-body interactions, given by

vð~rÞ ¼ V0sechðr=r0Þ2 þ 2d‘
m

1–3ðẑ � r̂Þ2
r3

fðrÞ: (3)

The first term above is an isotropic short-range contribu-
tion, and the second term is the anisotropic dipole-dipole
interaction [with a short-range cutoff fðrÞ] between dipoles
aligned in the ẑ direction with the dipole length defined as
d‘ ¼ md2m=2, where dm is the electric dipole moment. We
emphasize that although our model assumes point dipoles
it is also applied to ground-state dipolar molecules, where
all the details of its complicated structure are encapsulated
in the short-range behavior of the interactions. Moreover,
since the dipoles are free to interact in any geometry, the
solutions we obtain from Eq. (2) already include both
attractive and repulsive aspects of the dipolar anisotropic
interaction. To test whether any property of interest is
universal with respect to the three-body short-range phys-
ics, we have performed calculations for different values of
d‘ as well as for different isotropic short-range potentials.

The major difficulty introduced by the dipolar interac-
tion is that the three-body total angular momentum J is not
conserved. To calculate U�ðRÞ, we expand � as

��;M
� ðR;�Þ ¼ X

J;K

�JK
� ðR; �;’ÞDJ

KMð�;�; �Þ; (4)

whereDJ
KM are theWignerD functions,�,�, and � are the

Euler angles, and � and ’ are the Smith-Whitten hyper-
angles [13]. Here M is the space-fixed frame projection of
the total angular momentum J, K is the quantum number
for its body-fixed frame projection, and � is the total
parity. Finally, the body frame components �JK

� at fixed
R are numerically solved by expanding the � and ’ de-
pendences in a B-spline basis.
Here, we study the three-dipole problem for M� ¼ 0þ,

which includes the J� ¼ 0þ symmetry where the Efimov
effect occurs for nondipolar systems. Evidently, for d‘ �
r0 the Efimov effect might be expected to remain un-
changed. However, for d‘ > r0 the coupling among differ-
ent J’s might possibly compromise its persistence. In order
to investigate the Efimov effect for dipoles, we tune d‘ >
r0 in Eq. (3) to get a two-dipole zero-energy bound state,
where jasj � r0 [14]. Figure 1 summarizes our findings
and sketches the three-body energy spectrum obtained.
Figure 1(a) shows the adiabatic potentials U� for d‘=r0 ¼
38:11 and jasj ! 1, showing the overall topology of the
potentials, including a family of channels converging to
deeply bound dipolar dimers and channels describing the
collision of three free dipoles. For each dipolar dimer
channel there exists an infinity of channels converging to
that same threshold due to the coupling of all different J’s
[we have truncated the J expansion (4) at Jmax ¼ 14].
The inset in Fig. 1(a), however, shows the evidence of

our central result. It confirms the existence of the universal
Efimov potential

FIG. 1 (color online). (a) A typical set of adiabatic hyperspherical potentials U�ðRÞ for three dipoles that exhibit the Efimov
hyperradial potential curve (d‘=r0 ¼ 38:11 and jasj ! 1). Inset: Rescaled adiabatic potentials showing the Efimov potential (the
dashed lines are illustrations of the Efimov states in that potential, not to scale). (b) Schematic representation for the d‘ dependence of
as (upper part) and the Efimov spectrum (lower part) for dipolar systems (see the text). (c) The Efimov potential signature at the first
pole of as (d‘=r0 ¼ 4:86). The horizontal solid line shows the Efimov behavior given by Eq. (5) (see the text).
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U�ðRÞ ’ � s20 þ 1=4

2�R2
; (5)

which supports the usual infinity of three-body Efimov
states, illustrated schematically in the figure as horizontal
dashed lines. Our numerical explorations suggest that, in
the strong dipole limit where d‘ � r0, the rescaled poten-
tial in the inset in Fig. 1(a) is universal; i.e., the rescaled
potentials for different values of d‘ or for different
strengths of the isotropic interaction coincide almost per-
fectly. Figure 1(b) shows schematically the three-body
energy spectrum versus dipole length. As d‘>r0 increases,
new dipolar dimers are created and so are new families of
Efimov states. The binding energy of the lowest Efimov
state scales in proportion to 1=md2‘, based on our adiabatic
potential in the inset in Fig. 1(a) as well as Table I. Fig-
ure 1(c) gives further evidence for the long-range universal
Efimov potential when jasj ! 1. We checked that adia-
batic corrections to the Efimov potential are negligible.

The existence of the Efimov effect for three dipoles
might have been expected as a consequence of the
s-wave dominance of the two-body physics near the pole
of as [6]. Nevertheless, the Efimov effect for dipoles has a
striking difference from the usual Efimov effect. As shown
in the inset in Fig. 1(a) [see also Fig. 1(c)], the Efimov
potential extends only from values of R> d‘, while for
R< d‘ the dipolar interaction causes the Efimov channel
to be repulsive. This critically affects the universal prop-
erties associated with the dipolar Efimov effect. Since the
Efimov states are well separated from the short-range
region (at R � r0) by the repulsive barrier at R< d‘,
properties of Efimov states are expected to be fully univer-
sal; i.e., they will depend on the two-dipole physics alone,
namely, as and d‘. This implies that, in contrast to the usual
Efimov effect, the three-body phase (or parameter) [9,11]
is now universal and one can derive the energies of the
Efimov states (resonances) for both as > 0 and as < 0
(jasj> d‘). Moreover, the barrier for R< d‘ also sup-
presses decay of the Efimov states, and, therefore, the
Efimov states for large values of d‘ are likely to be more
long-lived than in the nondipolar scenarios.

To quantify the three-body parameter for dipolar inter-
actions, we calculate the position and the width of the
lowest Efimov resonance when jasj ! 1. To handle the
sharp crossings between the Efimov channel and other
deeply bound channels [see Fig. 1(a) and inset], we solve

Eq. (1) by the slow variable discretization method [15] and
extract the position and width of the Efimov resonances. In
Table I, we list the ground Efimov state energies E0 and the
widths � for a few values of d‘. As we have expected, the
positions of the Efimov resonances in Table I exhibit a
universal trend. For the widths of these resonances, how-
ever, we do not observe nor expect a purely universal
behavior, since they encapsulate the decay to deeply bound
states at smaller distances. Nevertheless, for increasing d‘,
the resonance width is suppressed as 1=d2‘, indicating in-

creased lifetimes of the Efimov states. The universal three-
body parameter 	� ¼

ffiffiffiffiffiffiffiffiffiffi
mE0

p
[9] is then estimated to be

0:17=d‘ in the limit of d‘ � r0. This knowledge of 	� [9]
then allows us to determine the universal formulas that
predict some important three-body scattering observables

K
ðas>0Þ
3 � 67:1

e2


�
sin2

�
s0 ln

�
as
d‘

�
þ 2:5

�
þ sinh2


�
a4s
m
; (6)

Kðas<0Þ
3 � 4590 sinhð2
Þ

sin2½s0 lnðjasjd‘
Þ þ 0:92� þ sinh2


a4s
m

; (7)

a
ðas>0Þ
Dd �

�
1:46þ 2:15 cot

�
s0 ln

�
as
d‘

�
þ 0:86þ i


��
as;

(8)

Vðas>0Þ
rel � 20:3 sinhð2
Þ

sin2½s0 lnðasd‘Þ þ 0:86� þ sinh2


as
m

: (9)

Here K3 is the rate coefficient for three-body recombina-
tion into weakly (as > 0) and deeply (as < 0) bound dipo-
lar dimers. aDd is the dipole (D) plus dipolar dimer (d)
scattering length, and Vrel is the corresponding relaxation
rate for such inelastic collision processes, D�

2 þD !
D2 þD. 
 is related to the probability of decay to deeply
bound channels [9]. Equations (6)–(9) now predict the
positions of the main features of such rates that character-
ize the Efimov physics. For instance, the minima in K3

[Eq. (6)] should occur for values of as given by a�þ3b ¼
1:8en�=s0d‘ (n ¼ 0; 1; 2; . . . ). The ratio a��3b =d‘ determines

the position of the Efimov resonances for K3 (as < 0)
[Eq. (7)], while a�Dd=d‘ determines the position of dipole

plus dipolar dimer resonances [Eqs. (8) and (9)]. The
second part of Table I lists these properties in terms of

ratios for all processes (we have dropped the factor en�=s0

for simplicity). The universality on the three-dipole prob-
lem also has key implications for its four-body analog. In
particular, the positions of the four-dipole features [16] can
be obtained from our results in Table I.
Our numerical results show that the attractive R�2

Efimov potential is absent when jasj & d‘. Nevertheless,
the adiabatic potentials are still universal. As shown in
Fig. 2(a), the diabatic potentials show universal scaling
with d‘. Figure 2(a) shows the lowest three-body contin-
uum channel, and the lowest dipole plus dipolar dimer
channel associated with the most weakly bound dimer
whose binding energy is proportional to 1=md2‘. For this

TABLE I. The positions and the widths of the lowest Efimov
state for different values of d‘ and the universal ratios for the
positions of the Efimov features in three-dipole scattering
observables.

jasj ! 1 d‘ (r0) md2‘E0 md2‘�

14.534 3:06� 10�2 5:2� 10�3

25.498 3:03� 10�2 6:6� 10�3

38.110 2:95� 10�2 3:2� 10�3

a��3b =d‘ � �8:1 a�þ3b =d‘ � 1:8 a�Dd=d‘ � 8:6
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case, recombination to such dimer states proceeds through
an inelastic transition near R � d‘, leading to the K3 / d4‘
scaling for recombination, consistent with Ref. [6]. Since
the dipole plus dipolar dimer channel is repulsive for
R< d‘, we expect that recombination to more deeply
bound states will be substantially less important since the
pathway to this final state would require tunneling through
to small R< d‘.

The behavior of the dipole plus dipolar dimer channels
when the dimer is deeply bound also shows results inter-
esting for dipole and dipolar dimer mixtures. These chan-
nels should be asymptotically described by

W�ðRÞ ’R�r0 Ed þ lDdðlDd þ 1Þ
2�R2

; (10)

where Ed is the dimer energy and lDd represents its average
or effective orbital angular momentum relative to the free
particle. For three particles with isotropic short-range in-
teractions, lDd obeys the usual rules of addition of angular
momentum. For instance, if the two-body state is an
s-wave state, lDd ¼ J. For dipolar states, however, our
results reveal that is no longer true, and we rationalize it
by the fact that the two-body state is not a pure angular
momentum eigenstate. In fact, our numerical calculations
show that lDd becomes d‘-dependent. Figure 2(b) shows
that lDd increases with d‘ in the same trend as the expec-

tation value of the angular momentum h ~j2i for the dipolar
dimer and the expectation value of the total (three-body)

angular momentum h ~J2i. However, the d‘ dependence of
lDd is not universal, as it varies with the short-range phys-
ics. Nevertheless, the nonzero lDd provides an average
centrifugal barrier that suppresses the dipole plus dipole-

dimer relaxation, Vrel / k2lDd

Dd r2lDdþ1
0 [11], where kDd� r�1

0

is the relative wave number. This suppression opens up the

possibility of creating stable mixtures of dipoles and two-
dipole molecules. Furthermore, with the tunability of the
barrier that can be achieved via field control of d‘, the
interaction between a dipole and a two-dipole molecule
can be controlled, providing an innovation for studies in
ultracold quantum gases at both the few-body and many-
body levels.
In summary, we have characterized the Efimov effect for

three bosonic dipoles. A key conclusion is that long-range,
anisotropic dipolar interactions are predicted to make the
Efimov physics more universal than in the traditional sys-
tems where this effect has been studied and observed.
Efimov resonances with dipolar interactions are also pre-
dicted to be long-lived, which should aid their experimen-
tal observation and manipulation. The dipolar interactions
introduce a tunable effective repulsion between a dipole
and a deeply bound dipolar dimer, which can be used to
control the collisions between the molecules and also to
stabilize the ultracold quantum gas of dipolar dimers.
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