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We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in

the decoupling limit to all orders. These theories resum explicitly all the nonlinear terms of an effective

field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is

maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of

the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a

similar toy model.
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Introduction.—Whether there exists a consistent exten-
sion of general relativity by a mass term is a basic question
of a classical field theory. A small graviton mass could also
be of a significant physical interest, notably for the cos-
mological constant problem.

A ghost-free linear theory of massive spin-2—the Fierz-
Pauli model [1]—had been notoriously hard to generalize
to the nonlinear level [2]: In addition to the general rela-
tivity momentum constraint, also the Hamiltonian con-
straint gets lost in a typical massive theory; as a result,
the sixth degree of freedom—the Boulware-Deser (BD)
ghost—emerges as a mode propagating on otherwise
physically meaningful local backgrounds (e.g., on a back-
ground of a lump of matter). This can be explicitly seen in
the effective field theory (EFT) approach to massive grav-
ity [3] in the decoupling limit [3,4], where the problem
manifests itself in the Lagrangian for the helicity-0 com-
ponent of the massive graviton. This Lagrangian generi-
cally contains nonlinear terms with more than two time
derivatives. The latter give rise to the sixth degree of free-
dom on local backgrounds, while, in general, these terms
lead to the loss of well-posedness of the Cauchy problem
for the helicity-0 field theory [3,4].

A step forward has been made recently in [5] where it
was shown that (a) the coefficients of the EFT can be
chosen so that the decoupling limit Lagrangian is ghost-
free—this involves choosing the ‘‘appropriate coeffi-
cients’’ order by order, and an algorithm was set for this
procedure to an arbitrary order—and (b) once these coef-
ficients are chosen in the effective Lagrangian, only a few
terms up to the quartic order survive in the decoupling
limit; all the higher-order terms vanish identically.
Moreover, the surviving terms are unique as their structure
is fixed by symmetries [5,6]. The above results enable one
to define a classical EFT that is consistent in the decou-
pling limit [5]. This theory was not considered in [2].

In the present work we build on the above findings, and
go far beyond them. In particular, we note the following.

(i) We construct Lagrangians that automatically produce
the ‘‘appropriate coefficients’’ once expanded in powers of
the fields; these give rise to theories that are ghost-free
automatically to all orders in the decoupling limit.
(ii) Using the obtained Lagrangians we study the issue of
the BD ghost away from the decoupling limit; we show that
the appropriately modified Hamiltonian constraint is main-
tained at least up to and including quartic order, hence
excluding the possibility of the BD ghost up to this order.
We also discuss an analogous (1þ 1)-dimensional model
and show explicitly how the Hamiltonian constraint is
preserved to all orders.
To emphasize, the requirement that the theory be ghost-

free in the decoupling limit leads to resummation of an
infinite number of terms of the classical EFTaway from the
decoupling limit. Because of this resummation, it becomes
straightforward, but still technically involved, to address a
more ambitious question of the sixth mode away from the
decoupling limit [7].
Formalism.—Define the tensor H�� as the covariantiza-

tion of the metric perturbation, g�� ¼ ��� þ h�� ¼
H�� þ �ab@��

a@��
b, where the four Stückelberg fields

�a transform as scalars, and �ab ¼ ð�1; 1; 1; 1Þ [3]. The
helicity-0 mode � of the graviton can be extracted by
expressing �a ¼ ðxa � �a�@��Þ, such that

H�� ¼ h�� þ 2��� � ���������;

��� � @�@��:
(1)

We may therefore define the following quantity:

K �
� ðg;HÞ ¼ �

�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
� �H

�
�

p
¼ �X1

n¼1

�dnðHnÞ�� ; (2)

with

�d n ¼ ð2nÞ!
ð1� 2nÞðn!Þ24n : (3)
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Here H
�
� ¼ g��H��, and ðHnÞ�� ¼ H

�
�1
H�1

�2
. . .H�n�1

� de-
notes the product of n tensors H�

�. Below, unless stated

otherwise, all the contractions are made by using the metric
g��. The tensor K�� ¼ g��K�

� is defined in such a

way that

K ��ðg;HÞjh��¼0 � ���: (4)

We use the same notation as in [4] where square brackets
½. . .� represent the trace of a tensor contracted by using the
Minkowski metric, e.g., ½�� ¼ ������ and ½�2� ¼
������������, while angle brackets h. . .i represent

the trace with respect to the physical metric g��, so that

hHi ¼ g��H�� and hH2i ¼ g��g��H��H��.

We are first interested in the decoupling limit [11]. For
that, let us define the canonically normalized variables

�̂ ¼ �3
3�with�3

3 ¼ m2MPl and ĥ�� ¼ MPlh��. The limit

is then obtained by taking MPl ! 1 and m ! 0 while

keeping �̂, ĥ��, and the scale �3 fixed. First, we construct

an explicit example of a nonlinear theory that bears no
ghosts in the decoupling limit and then give a general
formulation and show the absence of the BD ghost beyond
the decoupling limit in quartic order.

Massive gravity.—The consistency of the Fierz-Pauli
term (h2-h2��) relies on the fact that the Lagrangian

L ð2Þ
der ¼ ½��2 � ½�2� (5)

is a total derivative. To ensure that no ghost appears in the

decoupling limit, it is sufficient to extend Lð2Þ
der covariantly

away from h�� ¼ 0; i.e., replace ½�� and ½�2� by hKi and
hK2i, respectively, so that the total Lagrangian reads as

L ¼ M2
Pl

2

ffiffiffiffiffiffiffi�g
p �

R�m2

4
Uðg;HÞ

�
; (6)

with the potential U expressed as an expansion in H as

U ðg;HÞ ¼ �4ðhKi2 � hK2iÞ

¼ �4

 X
n�1

�dnhHni
!
2

� 8
X
n�2

�dnhHni: (7)

Expanding this expression to quintic order,

Uðg;HÞ ¼ ðhH2i � hHi2Þ � 1
2ðhHihH2i � hH3iÞ

� 1
16ðhH2i2 þ 4hHihH3i � 5hH4iÞ

� 1
32ð2hH2ihH3i þ 5hHihH4i � 7hH5iÞ þ � � � ;

(8)

we recover the decoupling limit presented in [5] with the
special indices c3 ¼ d5 ¼ f7 ¼ 0.

The Lagrangian (6) with (7) can be obtained from the
Lagrangian with a finite number of terms

L	 ¼ M2
Pl

2

ffiffiffiffiffiffiffi�g
p ½R�m2ðK2

�� �K2Þ�
þ ffiffiffiffiffiffiffi�g

p
	��ðg��K��K�� � 2K�� þH��Þ; (9)

where K�� is an independent tensor field that gets related

to H�� as in (2) due to the constraint enforced by the

Lagrange multiplier 	
�
� . Note that the expression (2) can

be rewritten asK�
� ¼ ��

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@��a@��

b�ab

p
, which gives

a square root structure in the full Lagrangian.
Decoupling limit.—It is straightforward to notice that

the leading contribution to the decoupling limitffiffiffiffiffiffiffi�g
p

Uðg;HÞjh��¼0 ¼ �4½ðh�Þ2 � ð@�@��Þ2� (10)

is a total derivative. The resulting interaction Lagrangian in
the decoupling limit is then given by [5]

L int ¼ ĥ��
�X��; (11)

with

�X �� ¼ �M2
Plm

2

8

�

�h��

½ ffiffiffiffiffiffiffi�g
p

Uðg;HÞ�jh��¼0: (12)

The expression for �X simplifies to

�X�� ¼ 1
2�

3
3½���� ���� þ�2

�� �����

þ 1
2ð�2 ��2

��Þ����: (13)

The tensor �X�� is conserved and gives rise to at most

second-order derivative terms in the equations of motion.
This tensor can be expressed as the product of two epsilon
tensors appropriately contracted with powers of ��� [6].

For the potential (7), the Lagrangian in the decoupling
limit is then given by (see Ref. [5])

L lim
�3

¼ �1
2ĥ

��ðÊ ĥÞ�� þ ĥ��
�X��; (14)

where Ê denotes the standard Einstein operator normalized
as in [5], and this result is exact (i.e., no higher-order
corrections). Notice that this is also in agreement with
the results of [5] up to quintic order, for the special case
c3 ¼ d5 ¼ f7 ¼ 0, but we explicitly demonstrate here that
this result remains valid to all orders.
General formulation.—As mentioned in [5], at each

order in the expansion there exists a total derivative

L ðnÞ
derð�Þ ¼ � Xn

m¼1

ð�1Þm ðn� 1Þ!
ðn�mÞ! ½�

m�Lðn�mÞ
der ð�Þ; (15)

withLð0Þ
derð�Þ ¼ 1 andLð1Þ

derð�Þ ¼ ½��. These total deriva-
tives generalize the ‘‘Fierz-Pauli’’ structure used previ-
ously to all orders; only the n � 4 terms are nonzero [5].
Then, the potential of any theory of massive gravity with
no ghosts in the decoupling limit can be expressed non-
linearly as
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U ðg;HÞ ¼ �4
X
n�2

�nL
ðnÞ
derðKÞ; (16)

where ½�m� in (15) should be replaced by hKmi and ex-
pressed in terms of g and H using (2).

Here again this specific structure ensures that the leading
contribution to the decoupling limit is manifestly a total
derivative by construction:ffiffiffiffiffiffiffi�g

p
Uðg;HÞjh��¼0 ¼ total derivative; (17)

and the resulting interaction Lagrangian can be derived by
noticing the general relation

�

�h��
hKnijh��¼0 ¼ n

2
ð�n�1

�� ��n
��Þ; (18)

so that

�

�h�� ½
ffiffiffiffiffiffiffi�g

p
LðnÞ

derðKÞ�jh��¼0

¼ Xn
m¼0

ð�1Þmn!
2ðn�mÞ! ð�

m
�� ��m�1

�� ÞLðn�mÞ
der ð�Þ; (19)

by using the notation �0
�� ¼ ��� and ��1

�� ¼ 0. The

decoupling limit Lagrangian is then given by (14) with
the same definition (12) for the tensor X��, giving here

�X �� ¼ 1

2
�3

3

X
n�2

�nðXðnÞ
�� þ nXðn�1Þ

�� Þ; (20)

with

XðnÞ
�� ¼ Xn

m¼0

ð�1Þm n!

2ðn�mÞ!�
m
��L

ðn�mÞ
der ð�Þ: (21)

The special theory found in [8,9] corresponds to the spe-
cific choices of coefficients �2 ¼ 1 and �3 ¼ �1=2; see
Ref. [12]. However, we emphasize that the results in this
Letter are now valid to all orders in nonlinearities.

Furthermore, at each order the tensors XðnÞ
�� are

given by the recursive relation XðnÞ
�� ¼ �n��

�X
ðn�1Þ
�� þ

���Xðn�1Þ
�� ���, with Xð0Þ

�� ¼ 1=2���. So since Xð4Þ
�� � 0,

all these tensors vanish beyond the quartic one, XðnÞ
�� � 0

for any n � 4, and the decoupling limit therefore stops at
that order, as previously implied in [5].

The theory with (16) has a well-posed Cauchy problem
on arbitrary backgrounds (some of which could flip the
sign of the � kinetic term and be unstable [6]).

Boulware-Deser ghost.—The previous argument ensures
the absence of a ghost in the decoupling limit, but it is
feasible that the ghost reappears beyond the decoupling
limit and is simply suppressed by a mass scale larger than
�3. Certain arguments have hinted towards the existence of
a BD ghost [4]. We reanalyze the arguments here and show
the absence of ghosts within the regime studied. To com-
pute the Hamiltonian, we fix the unitary gauge for which
� ¼ 0, such that

hHni ¼ X
‘�0

ð�1Þ‘C‘þn�1
‘ ½h‘þn�; (22)

where the Cn
m are the Bernoulli coefficients. We also focus

on the case where �2 ¼ 1 and �n ¼ 0 for n � 3. Below,
we work in terms of the Arnowitt-Deser-Misner variables
[13] g00 ¼ �N�2, g0i ¼ Ni, and gij ¼ 
ij, with the lapse

N ¼ 1þ �N, and the three-dimensional metric 
ij ¼
�ij þ hij. In terms of these variables, the potential is then

of the formffiffiffiffiffiffiffi�g
p

U ¼ Aþ �NBþ NiNj½�2�ij þ Cij

þ �Nð�ij þDijÞ � 1
2�N

2�ij � 1
8�

ijN2
k�; (23)

whereA,B, Cij, andDij are functions of hij, at least first

order in perturbations, and Cij þ 2Dij ¼ � 1
2h

ij þOðh2ijÞ,
and in this section we raise and lower the spacelike indices
using �ij. Notice that this is in agreement with the analysis

performed in [4] and corresponds to setting the coefficients
in Eq. (43) of [4] to A ¼ B ¼ D ¼ E ¼ 0, while C ¼
�1=2. However, we emphasize here that the presence of
the term CN2

i �N
2 does not signal the presence of a ghost

despite the fact that the equations for �N and Nj naively

appear to determine �N and Nj: To see this explicitly, one

can solve the equation for Nj and substitute the solution

obtained order by order into the equation for �N; then, in
the latter equation there is a cancellation of the cubic order
term containing �N. Hence, to that order �N disappears
from that equation, which ends up being a constraint for
hij. The cancellation of �N and the resulting constraint are

consequences of the no-ghost condition in the decoupling
limit.
The existence of the constraint can be shown more

directly in the Hamiltonian formalism in the quartic order
(corresponding to the cubic order in the equations) by
using a redefined shift ni:

Nj ¼ ð�i
j þ 1

2�N�i
j � 1

8�NhijÞni � Li
jni; (24)

then, the Hamiltonian is of the form

H ¼ M2
Pl

2

ffiffiffiffi



p ðNR0 þ NjR
jÞ þm2M2

Pl

8
ðAþB�NÞ

�m2M2
Pl

4
Lij

�
ninj � 1

2
Cki njnk þ

1

16
n2kninj

�
; (25)

up to quartic order in the metric perturbations. One can
check that the variation of the Hamiltonian (25) with
respect to the shift ni gives an equation which is indepen-
dent of N and serves to determine nj. Moreover, the lapse

remains a Lagrange multiplier even after integration over
the shift, hence giving rise to a Hamiltonian constraint on
the physical variables. Whether this constraint gives rise
to a secondary constraint, and whether the system should
be quantized as a first- or second-class system, is a
separate interesting question. The mere existence of the
Hamiltonian constraint is sufficient to claim the absence of
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the BD ghost to that order [14]. This remains true in the
presence of sources coupled covariantly to g��; the rede-

finition (24) does not involve the canonical momenta and
does not lead to any complications.

The Hamiltonian evaluated on the constraint surface is
proportional to m2, and whether or not it is positive semi-
definite is determined by A, B, Cij, and Dij. Thus, in
general, certain backgrounds could have slow tachyonlike
instabilities; however, this is a separate issue from that of
the BD ghost that we clarified above.

ð1þ 1Þ-D massive gravity.—Proving the absence of the
BD ghost in complete generality beyond the quartic order
is a grand task, which we save for a separate study.
However, we can analyze here a similar issue in a
ð1þ 1Þ-D toy model, where we consider the Hamiltonian

H ¼ ffiffiffiffi



p �
NR0 þ 
11N1R1 þm2

4
NUðg;HÞ

�
; (26)

with R0 and R1 arbitrary functions of the spacelike metric

11 and its conjugate momentum, and the potential U is
given in (7). In 1þ 1 dimensions, it is relatively easy to
check that the Hamiltonian then takes the exact form

H ¼ ffiffiffiffi



p ½NR0 þ 
11N1R1 � 2m2N�
� 2m2½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffi



p þ NÞ2 � 
11N2

1

q
� (27)

and seemingly includes terms quadratic in the lapse when
working at quartic order and beyond:

H �H 0 þH 1N þm2N2
1N

2 þ � � � : (28)

By stopping the analysis at this point, one would infer that
the lapse no longer enforces a constraint. However, in
terms of the redefined shift n1, N1 ¼ n1ð
11 þ N

ffiffiffiffi



p Þ, the
Hamiltonian takes the much more pleasant form

H ¼ ffiffiffiffi



p
NR0 � 2m2ð1þ ffiffiffiffi



p

NÞ
þ ð ffiffiffiffi



p þ NÞðn1R1 þ 2m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21

q
Þ; (29)

which remains linear in the lapse, even after integration
over the shift. It is again straightforward to see that the
lapse does enforce a constraint and does so for an ‘‘arbi-
trary background.’’

Outlook.—We have given a covariant nonlinear realiza-
tion of massive gravity in 4D which (i) is automatically
free of ghosts in the decoupling limit, to all orders in
nonlinearities, and (ii) keeps the lapse as a Lagrange multi-
plier away from the decoupling limit, at least up to quartic
order in nonlinearities. These findings constitute what we
believe is a very significant step forward and strongly
suggests the existence of an entirely ghost-free classical
theory of massive gravity. However, to prove this statement
in complete generality, two important ingredients are yet
missing: (a) proving that the lapse remains a Lagrange
multiplier to all orders; (b) checking whether the secondary
constraint is generated or not and whether the theory could

be canonically quantized as a first- or second-class system.
For the consistency of the theory at the quantum loop level,
one would have to establish the existence of a symmetry
which protects this theory against quantum corrections that
could revive the ghost. These points will be explored in a
further study.
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