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We show that for systems with broken time-reversal symmetry the maximum efficiency and the

efficiency at maximum power are both determined by two parameters: a ‘‘figure of merit’’ and an

asymmetry parameter. In contrast to the time-symmetric case, the figure of merit is bounded from above;

nevertheless the Carnot efficiency can be reached at lower and lower values of the figure of merit and far

from the so-called strong coupling condition as the asymmetry parameter increases. Moreover, the

Curzon-Ahlborn limit for efficiency at maximum power can be overcome within linear response.

Finally, always within linear response, it is allowed to have Carnot efficiency and nonzero power

simultaneously .
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The understanding of the fundamental limits that ther-
modynamics imposes on the efficiency of thermal ma-
chines is a central issue in physics and is becoming more
and more practically relevant in the future society. In
particular due to the need of providing a sustainable supply
of energy and to strong concerns about the environmental
impact of the combustion of fossil fuels, there is an
increasing pressure to find the best thermoelectric materi-
als [1–4].

A cornerstone result goes back to Carnot [5]. In a
cycle between two reservoirs at temperatures T1 and T2

(T1 > T2), the efficiency �, defined as the ratio of the
performed work W over the heat Q1 extracted from the
high temperature reservoir, is bounded by the so-called
Carnot efficiency �C:

� ¼ W=Q1 � �C ¼ 1� T2=T1: (1)

The Carnot efficiency is obtained for a quasistatic trans-
formation which requires infinite time and therefore the
extracted power, in this limit, reduces to zero. For this
reason the notion of efficiency at maximum power has
been introduced.

An upper bound for the efficiency at maximum power
was proposed long ago by several authors [6–9] and is
commonly referred to as the Curzon-Ahlborn upper bound:

�CA ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2=T1

q
: (2)

The range of validity of this bound has been widely dis-
cussed in several interesting papers [10–15]. For the ther-
moelectric power generation and refrigeration, within
linear response and for systems with time-reversal symme-
try, both the maximum efficiency and the efficiency at
maximum power, are governed by a single parameter, the
dimensionless figure of merit

ZT ¼ �S2

�
T; (3)

where � is the electric conductivity, S is the thermoelectric
power (Seebeck coefficient), � is the thermal conductivity,
and T is the temperature. The maximum efficiency is
given by

�max ¼ �C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p þ 1
; (4)

where �C is the Carnot efficiency; the efficiency �ð!maxÞ
at maximum power !max reads [10]

�ð!maxÞ ¼ �ðlÞ
CA

ZT

ZT þ 2
: (5)

The only restriction imposed by thermodynamics is

ZT � 0, so that �max � �C and �ð!maxÞ � �ðlÞ
CA, where

�ðlÞ
CA ¼ �C=2 is the Curzon-Alhborn efficiency in the linear

response regime. The upper bounds �C and �ðlÞ
CA are

reached when the figure of merit ZT ! 1. This limit
corresponds to the so-called strong coupling condition,
for which the Onsager matrix L becomes singular (that
is, detL ¼ 0) and therefore the ratio Jq=J�, with Jq heat

current and J� electric (particle) current, is independent of

the applied temperature and chemical potential gradients.
In this Letter we investigate, within the linear response

regime, the case when time-reversal symmetry is broken,
for instance by means of an applied magnetic field [16]. We
show that in this case the maximum efficiency as well as
the efficiency at maximum power depend on two parame-
ters: the first parameter is a generalization of the figure of
merit ZT, while the second, asymmetry parameter, is the
ratio of the off-diagonal terms of the Onsager matrix. The
presence of a second parameter is highly important since it
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offers an additional freedom in the design of high-
performance thermoelectric devices. In particular it turns
out that the figure of merit is bounded from above when the
asymmetry parameter is different from unity; nevertheless
the Carnot efficiency is reached at lower and lower values
of the figure of merit and far from the strong coupling
condition as the asymmetry parameter increases. Further-
more, the Curzon-Ahlborn limit can be overcome. Finally,
within linear response it is not forbidden to have Carnot
efficiency and nonzero power simultaneously.

The model we consider is sketched in Fig. 1. Both
electric and heat currents flow along the horizontal axis.
The system is in contact with left and right reservoirs at
temperatures TL and TR and chemical potentials �L and
�R. Even though fluxes are one dimensional, the motion
inside the system can be two or three dimensional. We start
from the equations connecting fluxes and thermodynamic
forces within linear irreversible thermodynamics [17]:

J�ðBÞ ¼ L��ðBÞX1 þ L�qðBÞX2;

JqðBÞ ¼ Lq�ðBÞX1 þ LqqðBÞX2;
(6)

where J� and Jq are the particle and heat currents, B an

applied magnetic field or any parameter breaking time
reversibility (such as the Coriolis force, etc.), and X1 ¼
����, X2 ¼ �� ¼ ��T=T2 the thermodynamic forces,
with �� ¼ �R ��L, � ¼ 1=T, �� ¼ �R � �L. �T ¼
TR � TL is assumed to be small compared to TL�TR�T.
Without loss of generality we assume TL > TR. Therefore,
the parameter X2 is always positive, while the sign of X1 is
determined in such a way that the work done by the particle
current is positive. Note that the sign of the current is taken
positive if it flows from the left to the right reservoir.

The positivity of the entropy production rate,

_S ¼ J�X1 þ JqX2 � 0; (7)

implies for the Onsager coefficients Lij (i, j ¼ �, q) that

L��ðBÞ � 0; LqqðBÞ � 0;

L��ðBÞLqqðBÞ � 1

4
½L�qðBÞ þ Lq�ðBÞ�2 � 0:

(8)

Moreover, the Onsager-Casimir relations in the presence of
a magnetic field read

LijðBÞ ¼ Ljið�BÞ: (9)

The Onsager coefficients are related to the familiar
transport coefficients �, �, S as follows [17]:

�ðBÞ ¼ e2

T
L��ðBÞ; (10)

�ðBÞ ¼ 1

T2

detLðBÞ
L��ðBÞ ; (11)

SðBÞ ¼ L�qðBÞ
eTL��ðBÞ ; Sð�BÞ ¼ Lq�ðBÞ

eTL��ðBÞ ; (12)

where e is the electron charge and L denotes the Onsager
matrix with matrix elements Lij. Note that the Onsager-

Casimir relations LijðBÞ¼Ljið�BÞ imply �ðBÞ¼�ð�BÞ
and �ðBÞ ¼ �ð�BÞ, while a priori it is possible to have
SðBÞ � Sð�BÞ. In what follows, to improve readability we
do not write B explicitly as an argument in the Onsager
coefficients, unless necessary.
Efficiency at maximum power.— The efficiency �, under

steady-state conditions, is given by the ratio of the output
power over the heat current (leaving the hot reservoir):

� ¼ !

Jq
: (13)

The output power

! ¼ J��� ¼ �J�TX1 (14)

is maximal when

X1 ¼ � L�q

2L��

X2 (15)

and is given by

!max ¼ T

4

L2
�q

L��

X2
2 ¼

�C

4

L2
�q

L��

X2; (16)

where �C ¼ ��T=T ¼ TX2 is the Carnot efficiency.
The efficiency at maximum power

�ð!maxÞ ¼ !max

Jq
¼ �ðlÞ

CA

1

2
L��Lqq

L2
�q

� Lq�

L�q

(17)

is seen to depend on two parameters:

x � L�q

Lq�

¼ SðBÞ
Sð�BÞ ; (18)

y � L�qLq�

detL
¼ �ðBÞSðBÞSð�BÞ

�ðBÞ T (19)

and writes

�ð!maxÞ ¼ �ðlÞ
CA

xy

2þ y
: (20)

In the particular case x ¼ 1, y reduces to the ZT ¼
ð�S2=kÞT figure of merit of the time-symmetric case and
Eq. (20) reduces to Eq. (5). While thermodynamics does
not impose any restriction on the attainable values of the
asymmetry parameter x, the third inequality in (8) impliesFIG. 1. Schematic drawing of the model.
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hðxÞ � y � 0 if x < 0;

0 � y � hðxÞ if x > 0;
(21)

where hðxÞ ¼ 4x=ðx� 1Þ2 and we have taken into account
that x and y must have the same sign since (8) implies
detL � 0 and y ¼ xL2

q�= detL. The function hðxÞ is drawn
in Fig. 2. Note that limx!1hðxÞ ¼ 1 and therefore there is
no upper bound on yðx ¼ 1Þ ¼ ZT. It is easy to check that
the maximum �? in (20) is achieved for y ¼ hðxÞ, that is,

�ð!maxÞ � �? ¼ �C

x2

x2 þ 1
: (22)

The function �?ðxÞ is drawn in Fig. 3 (dashed curve).
Several remarks are in order. To begin with, in the absence
of the magnetic field (x ¼ 1) L�q ¼ Lq� and the Curzon-

Ahlborn limit for the linear response regime is recovered:

�?ðx ¼ 1Þ ¼ �ðlÞ
CA ¼ �C=2. Furthermore, the Curzon-

Ahlborn limit can be overcome when jxj> 1 and �?

approaches the Carnot efficiency when jxj ! 1. We also
note that if the magnetic field B is reversed, owing to the
Onsager-Casimir relations, x is replaced by 1=x. From
inequality (22) it then follows that the average efficiency
for B and�B cannot overcome the Curzon-Ahlborn limit:
1
2 ð�?ðxÞ þ �?ð1=xÞÞ � �ðlÞ

CA.

Maximum efficiency.— The maximum of

� ¼ ��J�
Jq

¼ �TX1ðL��X1 þ L�qX2Þ
Lq�X1 þ LqqX2

(23)

over X1, for fixed X2 and under the condition Jq > 0, is

achieved for

X1 ¼
Lqq

Lq�

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detL

L��Lqq

s �
X2 (24)

and is given by

�max ¼ �Cx

ffiffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffi
yþ 1

p þ 1
: (25)

Note that (21) implies y � �1 for any x, so that �max is as
expected a real-valued function. We point out that at x ¼ 1
we recover the well-known efficiency expression (4). For a
given asymmetry parameter x the maximum �M of (25) is
again reached when y ¼ hðxÞ. By substituting the function
hðxÞ into Eq. (25) we find

�M ¼
�
�Cx

2 if jxj � 1;
�C if jxj � 1:

(26)

The function �MðxÞ is drawn in Fig. 3 (full curve). On the
other hand, when x � 1 the figure of merit y alone is no
longer sufficient to determine the thermoelectric effi-
ciency: �max depends on both x and y. Moreover, the
Carnot limit can be achieved only when jxj � 1 [18]. We
point out that when jxj ! 1, the figure of merit y required
to get the Carnot efficiency becomes increasingly smaller.
When jxj � 1 the Carnot efficiency is obtained under the
condition y ¼ hðxÞ, which implies detL¼ðL�q�Lq�Þ2=4.
Therefore Carnot efficiency andL�q �Lq� imply detL>0,

that is, the strong coupling condition is not fulfilled.
The entropy production rate at maximum efficiency is

_Sð�MÞ ¼
8<
:

ðL2
�q�L2

q�Þ2
4L��L

2
q�

X2
2 if jxj< 1;

0 if jxj � 1:
(27)

Hence there is no entropy production at jxj � 1, in agree-
ment with the fact that in this regime �M ¼ �C.
We can now derive the output power at maximum

efficiency:

!ð�MÞ ¼ �M

4

jL2
�q � L2

q�j
L��

X2: (28)
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FIG. 2 (color online). Function hðxÞ (blue solid curve). This
function has a vertical asymptote at x ¼ 1 (dashed line).
Thermodynamics restricts the parameter y between y ¼ 0 and
y ¼ h.
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FIG. 3 (color online). Ratio �=�C as a function of the asym-
metry parameter x, with � ¼ �? (dashed curve) and � ¼ �M

(solid curve). The black filled circle corresponds to the Curzon-

Ahlbohrn limit at x ¼ 1: �ðlÞ
CA ¼ �C=2.
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From relation (13), the heat current is determined as
Jq ¼ jL2

�q � L2
q�jX2=ð4L��Þ. It is readily seen from (16)

and (28) that !ð�MÞ � !max. It is important to note that
!ð�MÞ ! !max when jxj ! 1, as expected since in this
limit �? ! �M ¼ �C. Therefore, in this limit we have
Carnot efficiency and power !max simultaneously.

In summary, we have shown that when time-reversal
symmetry is broken both the maximum efficiency and
the efficiency at maximum power are no longer exclusively
determined by the figure of merit ZT. Two parameters are
needed, an asymmetry parameter x and a parameter y
which reduces to ZT in the symmetric limit x ¼ 1. In the
case jxj> 1, it is possible to overcome the Curzon-
Ahlborn limit within linear response and to reach the
Carnot efficiency, for an increasingly smaller and smaller
figure of merit y as jxj becomes larger. With regard to the
practical relevance of the results presented here, we should
note that in the noninteracting case SðBÞ ¼ Sð�BÞ, thus
implying x ¼ 1, is a consequence of the symmetry prop-
erties of the scattering matrix [19]. On the other hand, the
Onsager-Casimir symmetry relations do not impose the
symmetry of the Seebeck coefficient under the exchange
B ! �B. Therefore, this symmetry may be violated when
electron-phonon and electron-electron interactions are
taken into account. While the Seebeck coefficient has al-
ways been found to be an even function of the magnetic
field in two-terminal purely metallic mesoscopic systems
[20], Andreev interferometer experiments [21] and recent
theoretical studies [22,23] have shown that systems in
contact with a superconductor or with a heat bath can
exhibit nonsymmetric thermopowers. It is a challenging
problem to find realistic setups with x significantly differ-
ent from unity, while approaching the Carnot efficiency.
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