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We study the effect of different types of fluctuation on the motion of self-propelled particles in two

spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g.,

thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point

parallel or perpendicular to the time dependent orientation of the particle. We derive analytical

expressions for the speed and velocity probability density for a generic model of active Brownian

particles, which yields an increased probability of low speeds in the presence of active fluctuations in

comparison to the case of purely passive fluctuations. As a consequence, we predict sharply peaked

Cartesian velocity probability densities at the origin. Finally, we show that such a behavior may also occur

in non-Gaussian active fluctuations and discuss briefly correlations of the fluctuating stochastic forces.
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In recent decades there has been an increasing focus
on statistical descriptions of systems far from equilibrium.
A whole class of biological and physical systems which
may be referred to as active matter has been studied
theoretically and experimentally. Examples of such sys-
tems range from the dynamical behavior of individual
units such as Brownian motors [1,2], motile cells [3–8],
macroscopic animals [9–11], or artificial self-propelled
particles [12–16] to large coupled ensembles of such units
and their large scale collective dynamics [11,17–21]. A
major driving force of the active matter research is
continuously improving experimental techniques, such as,
for example, automated digital tracking [6,8,10,19] or
the realization of active granular and colloidal systems
[12,13,16,22].

Despite recent advances in active matter research, there
is still a lack of theoretical foundations. For example, up to
date no clear distinction has been made between external
fluctuations due to a fluctuating environment and internal
fluctuations originating from the active nature of the sys-
tem. Only recently it was shown how internal fluctuations
may lead to a complex behavior of the mean squared
displacement of active particles [23].

Recent measurements of stationary speed probability
densities of active biological agents report increased prob-
abilities of low speeds jvj ’ 0, which cannot be explained
by the Rayleigh probability density in 2D or the Maxwell
probability density in 3D [6–8]. Motivated by these results,
we focus in this Letter on the impact of active (out-of-
equilibrium) fluctuations on velocity and speed probability
density functions (PDFs). We will show in a generic model
that active fluctuations have a characteristic impact on the
stationary speed PDF accessible in experiments.

We assume equations of motion for a fluctuating particle
of the following form:

_r ¼ v; m _v ¼ ��ðvÞvþ �ðtÞ; (1)

with rðtÞ ¼ ðxðtÞ; yðtÞÞ being the position vector of the
particle, and vðtÞ ¼ ðvxðtÞ; vyðtÞÞ being its velocity vector.

We set the particle mass without loss of generality to
m ¼ 1. The first term in the velocity equation models the
friction or propulsion force, which acts along the direction
of the velocity vector. For active particles, the coefficient
�ðvÞ depends in general on the velocity of the particle. It
can even change sign and if it becomes negative, the
velocity is amplified due to a nonequilibrium propulsion
mechanism. The second term is a random force �ðtÞ
accounting for the stochasticity in the motion of individual
particles.
Here we consider polar active particles with a preferred

direction of motion (heading) determined by their propul-
sion mechanism (‘‘head-tail’’ asymmetry). The orientation
of the particle is defined by the unit (heading) vector eh.
In two spatial dimensions, it is fully determined by the
angle ’ðtÞ defining the polar orientation with respect to
the x axis: ehðtÞ ¼ ð cos’ðtÞ; sin’ðtÞÞ, and the evolution
of the position of can be rewritten as _rðtÞ ¼ vðtÞ ¼ vðtÞ
ehðtÞ, with vðtÞ being the velocity with respect to the
heading.
The temporal evolution of the velocity vector in the new

variables ðvðtÞ; ’ðtÞÞ reads

_v ¼ ��ðvÞvþ eh � �ðtÞ; _’ ¼ 1

v
e’ � �ðtÞ; (2)

where e’ðtÞ ¼ ð� sin’ðtÞ; cos’ðtÞÞ is the unit vector in the
angular direction [24]. We emphasize the difference
of velocity with respect to the heading v and speed s ¼
jvj ¼ jvj. The radial component of velocity v ¼ veh might
take also negative values, corresponding to a reverse mo-
tion of the particle with respect to its heading, whereas the
speed given by the absolute value of the velocity is always
positive. Thus the v;’ coordinates have to be distin-
guished from classical polar coordinates (s;�).
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In this Letter, we distinguish passive and active fluctua-
tions: (i) Passive fluctuations have their origin in a fluctu-
ating environment in which the particle moves. In a
homogeneous environment the passive random force �pðtÞ
is independent on the direction of motion (heading) of the
particle. A classical example of passive fluctuations is
ordinary Brownian motion, where the stochastic force is
associated with random collisions of fluid molecules with
the Brownian particle. The fluctuating force reads

� pðtÞ ¼
ffiffiffiffiffiffiffi
2D

p
�ðtÞ ¼ ffiffiffiffiffiffiffi

2D
p ½�xðtÞex þ �yðtÞey�; (3)

where D is the noise intensity and �i are normally distrib-
uted random variables with h�iðtÞi ¼ 0 and h�iðtÞ�jðt0Þi ¼
�ij�ðt� t0Þ.

In contrast to Eq. (3), we introduce (ii) active fluctua-
tions as independent stochastic processes in the direction
of motion and in the velocity with respect to the heading
[23] and perpendicular to it. A simple realization is inde-
pendent Gaussian white noise in the direction of motion eh
and in the angular direction e’:

� aðtÞ ¼
ffiffiffiffiffiffiffiffiffi
2Dv

p
�vðtÞeh þ

ffiffiffiffiffiffiffiffiffiffi
2D’

q
�’ðtÞe’ (4)

with angular and velocity noise intensities:D’,Dv. Hence,

active fluctuations are a pure out-of-equilibrium phenome-
non. They are relevant in the motion of biological agents
or self-propelled particles. The origin of these fluctuations
can be, for example, variations in the propulsion of chemi-
cally powered colloids [12–14], complex intracellular pro-
cesses in cell motility [6,8], or unresolved internal decision
processes in animals [10,11].

We point out that despite the similarity of Eqs. (3) and (4)
the active fluctuations lead to multiplicative noise terms in
Cartesian coordinates [Eq. (1)]. The basis (eh, e’) depends

on the actual orientation ’ðtÞ in contrast to (ex, ey) which

is fixed. However, in the v’ frame the equations of motion
for active fluctuation assume a simple form with additive
noise terms:

_v ¼ ��ðvÞvþ ffiffiffiffiffiffiffiffiffi
2Dv

p
�vðtÞ; _’ ¼ 1

v

ffiffiffiffiffiffiffiffiffiffi
2D’

q
�’ðtÞ:

(5)

The v dynamics decouple from the ’ dynamics. We can
easily derive the stationary PDF of velocities via the corre-
sponding Fokker-Planck equation. For the spatially iso-
tropic case there is no preferred direction of motion and
over time particles move randomly in all directions.

In general, the motion of a small particle will be influ-
enced by both fluctuations types �ðtÞ ¼ �aðtÞ þ �pðtÞ.
The passive fluctuations introduce multiplicative noise
terms in v’ frame (2). Using Stratonovich interpre-
tation the corresponding Fokker-Planck equation can be
derived to

@p̂ðv;’; tÞ
@t

¼ � @

@v

��
��ðvÞvþD

v

�
p̂

�
þ ðDv þDÞ @

2p̂

@v2

þD’ þD

v2

@2p̂

@’2
: (6)

The resulting stationary PDF in ’ is uniform qð’Þ ¼
1=ð2�Þ and the total stationary PDF decomposes as
p̂ðv; ’Þ ¼ pðvÞqð’Þ with

pðvÞ � vD=DþDv exp

�
�
Z v

dv0 �ðv0Þv0

ðDv þDÞ
�
: (7)

The speed PDF ~pðsÞ can be derived from pðvÞ by taking
into account that on average for each polar angle � some
particles head in the direction of ’ ¼ �, whereas the
others have the opposite heading ’ ¼ �þ �. In the pres-
ence of both fluctuation types (mixed case) and for arbi-
trary �ðvÞ, the stationary speed PDF can be calculated
using Eq. (7): ~pðsÞ ¼ pðsÞ þ pð�sÞ. In particular, we
consider here a linear velocity dependent friction [25,26]:
�ðvÞ ¼ �0ð1� v0=vÞ, with v0 � 0 being the stationary
velocity of the particle with respect to its heading. The
constant �0 is the inverse relaxation time of the velocity
dynamics. The dissipative force ��ðvÞv ¼ �0ðv0 � vÞ is
negative for v > v0 (friction) and positive for v < v0

(propulsion). It reduces to Stokes friction for v0 ¼ 0.
The stationary speed PDF reads

~pðsÞ � sD=DþDv½e�Aðs�v0Þ2 þ e�Aðsþv0Þ2�; (8)

with A ¼ �0=2ðDþDvÞ. For vanishing fluctuation
strength (D, Dv ! 0) the speed PDF converges to � peak
at s ¼ v0 irrespective on the type of fluctuations thus the
different impact of active and passive fluctuations becomes
apparent only for sufficiently large fluctuation strengths,
which should be expected in corresponding systems (see,
e.g., [6,8,14]).
The speed PDF in Eq. (8) increases for low speeds s�

with � ¼ D=ðDþDvÞ (0 � � � 1). The extreme �
values correspond to the limiting cases of pure active
fluctuations � ¼ 0 and pure passive fluctuations � ¼ 1.
The PDF assumes a finite value at vanishing speed
(~pð0Þ> 0) only for pure active fluctuations D ¼ 0, but
we observe for D> 0 an increasing probability (integral
of the PDF over a finite interval) of low speeds with
increasing strength of active velocity fluctuations Dv

(Fig. 1).
In the limit Dv, D � �v2

0 the self-propulsion becomes

negligible and the PDF in Eq. (8) converges towards the
Stokes limit (v0 ¼ 0) under the influence of both fluctua-
tion types (see Figs. 1 and 2). The Stokes limit of pure
active or passive fluctuations demonstrates clearly the
different impact of the two fluctuations types. The speed
PDF for purely passive fluctuations (Dv ¼ 0) and �ðvÞ ¼
�0 ¼ const> 0 is given by the Rayleigh PDF ~ppðsÞ �
s exp½��0s

2=ð2DÞ�. The speed PDF vanishes for s ¼ 0
due to the random ‘‘kicks’’ which are independent of the
heading of the particle and drive the particle speed away
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from s ¼ 0 (Fig. 1). In the opposite case of pure active
fluctuations (D ¼ 0) the speed PDF is given by a half-
Gaussian ~pðsÞ � exp½��0s

2=ð2DvÞ�. Pure active velocity
fluctuations acting along the heading direction result in a
finite speed PDF at s ¼ 0.

In many experiments the direct measurement of the
particle heading can be very difficult. For example, the
direction of motion of amoeboid cells is determined by
the polarity of their intracellular cytoskeleton invisible
during optical recording of cell trajectories. In this case,
the Cartesian velocity PDF is a reliable measure [8]. For
the mixed case with self-propulsion, it reads

Pðvx; vyÞ � jvj�Dv=DþDv½e�Aðjvj�v0Þ2 þ e�Aðjvjþv0Þ2�; (9)

with jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
x þ v2

y

q
. It can be immediately seen that a

singularity of Pðvx; vyÞ at jvj ¼ 0 exists in the presence of

active velocity fluctuationsDv > 0 (see Fig. 2) leading to a
sharply peaked PDF close to the origin. Please note that
this singularity follows directly from the increased proba-
bility of low speeds resulting from Eq. (8). It is a general
feature of active Gaussian velocity fluctuations acting
along the heading direction and is independent on the
particular choice of the friction function �ðvÞ.

The consideration of active fluctuations, which are un-
correlated in the heading and angular direction, may be too
simplistic. Therefore, we have analyzed also the situation
of correlated Gaussian fluctuations. For the simplest case
of constant correlations with h�vðtÞ�’ðt0Þi ¼ Dv’�ðt� t0Þ,
we obtain an additional fluctuation induced torque leading
to a finite mean turning velocity h _’i ¼ �Dv’=ð2v2Þ.
Since such a preferred turning was not reported so far,

we conclude that correlations will have a more complex
temporal behavior with vanishing mean. Thus the assump-
tion of independent fluctuations is reasonable as confirmed
by experiments [6].
As an example of a system with active non-Gaussian

velocity fluctuations, we consider a particle driven by shot
noise �SNðtÞ consisting of short force impulses at ti with
random exponentially distributed times between succes-
sive kicks [27,28]. The temporal density of the random
impulses is �. The angular dynamics is determined again
by Gaussian active fluctuations. The equations of motion
read

_v ¼ ��0vþDs�SNðtÞ; _’ ¼ 1

v

ffiffiffiffiffiffiffiffiffiffi
2D’

q
�’ðtÞ; (10)

with �SNðtÞ ¼ P
i�i�ðt� tiÞ where the �i are exponen-

tially distributed amplitudes. We set h�i ¼ 1, therefore
Ds � 0 denotes the strength of the kicks. The shot-noise
process has a nonvanishing mean h�SNi ¼ �. The random
force is always positive, Ds�SNðtÞ � 0, therefore the ve-
locity assumes only positive values yielding v ¼ s at all
times. The stationary speed PDF can be obtained if the shot
noise is taken as a limit of a Markovian telegraph process
[27,28]. In the corresponding white shot-noise limit the
PDF becomes
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FIG. 2 (color online). Stationary Cartesian probability density
Pðvx; vyÞ for self-propelled particles with v0 ¼ 1 and pure active

fluctuations (D ¼ 0) for different velocity noise strengths:
Dv ¼ 0:1, top; Dv ¼ 0:2, center; Dv ¼ 0:5 bottom. Left col-
umn: Results of numerical integration of Eqs. (1); Central
column: Analytical solution given in Eq. (9); Right column:
One-dimensional cross sections Pðvx; 0Þ with analytical solu-
tions (solid lines) and numerical results (symbols).

FIG. 1 (color online). Stationary speed probability density
~pðsÞ for Stokes friction v0 ¼ 0 (a),(b) and self-propelled
Brownian motion v0 ¼ 1:0 (c),(d) under the influence of active
and passive fluctuations for different velocity fluctuation strengths
�D ¼ ðDþDvÞ=�0. Three cases are shown: only active fluctua-
tion with D ¼ 0, �D ¼ Dv=�0 (red or light gray), only passive
fluctuations �D ¼ D=�0, Dv ¼ 0 (black) and the mixed case
Dv ¼ D (blue or dark gray); (a),(c) �D ¼ 0:2; (b),(d) �D ¼ 1:0.
The solid lines show analytical results [Eq. (8)] whereas symbols
show results obtained from Langevin simulations.
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~p SNðsÞ ¼ NSNs
ð�=�0Þ�1 exp

�

� s

Ds

�

; (11)

with N�1
SN ¼ Dð�=�0Þ

s �ð�=�0Þ. We distinguish two qualita-

tively different regimes: for �=�0 < 1 the speed PDF
assumes a maximum at s ¼ 0 and decays monotonously
with increasing s. For �=�0 > 1 pSNðsÞ vanishes for s ¼ 0,
increases initially with s up to a maximum at s ¼
Dsð�=�0 � 1Þ and decreases for larger speeds [Fig. 3(a)].
The speed PDF increases at small speeds as s� with � ¼
�=�0 � 1, thus for �=�0 < 2 the corresponding Cartesian
distributions shows a divergence at the origin [Fig. 3(b)] as
for active Gaussian fluctuations.

In conclusion, we distinguish active fluctuations in self-
propelled Brownian motion from passive ones by formu-
lating corresponding source terms in the Langevin equa-
tion. We analyze their impact on the stationary speed and
velocity PDFs. In general, active Gaussian fluctuations
acting along the direction of motion, result in a power-
law increase of the speed density ~pðsÞ � s� with �< 1
for s � 1 and, as a consequence, to a strongly peaked
Cartesian velocity PDF with a divergence at the origin
(Fig. 2). Such peaks, corresponding to increased counts
in velocity histograms at v 	 0, have been reported from
cell experiments [7,8].

We expect that a corresponding analysis of experimen-
tally obtained speed and velocity PDFs for various self-
propelled systems will yield similar results, which in turn
provide information about the fluctuations governing the
microscopic dynamics. In contrast to the mean squared
displacement [23], these characteristic deviations in the
PDF become apparent irrespective of the time-scale sepa-
ration between velocity and angular dynamics and are
therefore a reliable indicator of active fluctuations. In
fact, the exponent �< 1 can be used as a quantitative
measure of the relative strength of active fluctuations, if
the corresponding power law at low speed can be deter-
mined reliably. Furthermore, we are convinced that a simi-
lar distinction of fluctuation in overdamped models will
have a similar impact on corresponding PDFs.

Finally, we have shown that already a rather subtle
difference in the implementation of fluctuation can have

a dramatic impact on the motion statistics of individual
units and should be taken into account, e.g., in modeling
drift and diffusion of active particles.
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