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We describe a simple method for certifying that an experimental device prepares a desired quantum

state �. Our method is applicable to any pure state �, and it provides an estimate of the fidelity between �

and the actual (arbitrary) state in the lab, up to a constant additive error. The method requires measuring

only a constant number of Pauli expectation values, selected at random according to an importance-

weighting rule. Our method is faster than full tomography by a factor of d, the dimension of the state

space, and extends easily and naturally to quantum channels.
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In recent years there has been substantial progress in
preparing many-body entangled quantum states in the
laboratory [1]. A key step in such experiments is to verify
that the state of the system is the desired one. This can be
done using quantum state tomography, or techniques such
as entanglement witnesses [2]. However, in many cases
these solutions are not fully satisfactory. Tomography gives
complete information about the state, but it is very
resource-intensive, and has difficulty scaling to large
systems. Entanglement witnesses can be much easier to
implement, but are not a generic solution since known
constructions only work for special quantum states.

Here we propose a new method, direct fidelity estima-
tion, that is much faster than tomography, is applicable to a
large class of quantum states, and requires minimal experi-
mental resources. Let us first describe the setting of the
problem. Consider a system of n qubits, with Hilbert space
dimension d ¼ 2n, and let � be the desired state, i.e., the
state we hope to accurately prepare. We make two basic
assumptions. First, we assume that � is pure. However,
we do not assume any additional structure or symmetry,
so our method goes beyond previous work [3,4] to encom-
pass nearly all of the states of interest in experimental
quantum information science (e.g., the Greenberger-
Horne-Zeilinger (GHZ) and W states, stabilizer states,
cluster states, matrix product states, projected entangled
pair states, etc.) in a unified framework. Second, we as-
sume that we can measure n-qubit Pauli observables, that
is, tensor products of single-qubit Pauli operators; we do
not need to perform any other operations. Thus our method
is applicable to any system that is capable of single-qubit
gates and readout, without needing to rely on 2-qubit gates
or entangled measurements.

Our method works by measuring a random subset of
Pauli observables chosen according to an ‘‘importance-
weighting’’ rule. Roughly, we select Pauli operators that
are most likely to detect deviations from the desired state
�. We use the resulting measurement statistics to estimate
the fidelity Fð�;�Þ, where � is the actual state in the lab.

Surprisingly, although there are 4n distinct Pauli operators,
we only need to sample a constant number of them to
estimate Fð�;�Þ up to a constant additive error, for arbi-
trary �. That is, for every possible state �, with high
probability over the choice of Pauli measurements, we
get an accurate estimate of Fð�;�Þ.
Although we measure only a constant number of Pauli

observables, we need to repeat each measurement many
times in order to estimate the corresponding expectation
value. The number of repetitions depends on the desired
state �. In the worst case, it is OðdÞ, but in many cases of
practical interest, it is much smaller. For example, for
stabilizer states, the number of repetitions is constant,
independent of the size of the system, and for the W state,
it is only quadratic in the number of qubits n.
Even in the worst case, our method requires far fewer

resources than full tomography, both in theory and in
practice. We demonstrate this by proving lower bounds
on the sample complexity of full tomography, and by
numerical simulations.
Finally, we show an analogous method for certifying any

unitary quantum channel by estimating the entanglement
fidelity. We discuss applications to benchmarking quantum
circuits—as a special case, our method can certify Clifford
circuits in constant time, independent of the number of
qubits and gates.
Fidelity estimation.—The fidelity between our desired

pure state � and the actual state � is given by [5]

Fð�;�Þ ¼ ðtr½ð ffiffiffiffi
�

p
�

ffiffiffiffi
�

p Þ1=2�Þ2 ¼ trð��Þ: (1)

We can write trð��Þ in terms of the Pauli expectation
values of � and �. Let Wk (k ¼ 1; . . . ; d2) denote all
possible Pauli operators (n-fold tensor products of I, �x,

�y, and �z). Define the characteristic function ��ðkÞ ¼
trð�Wk=

ffiffiffi
d

p Þ, and note that

tr ð��Þ ¼ X
k

��ðkÞ��ðkÞ: (2)
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In general, Eq. (2) involves the expectation values of all
d2 Pauli operators. However, it is easy to see that in certain
cases fewer Pauli operators are required. For example, if �

is a stabilizer state, ��ðkÞ takes on values of �1=
ffiffiffi
d

p
at the

d points in the stabilizer group of �, and vanishes every-
where else. So the sum in (2) contains only d terms, and
one can compute trð��Þ by measuring only d Pauli opera-
tors. Furthermore, to merely estimate trð��Þ one only
needs to measure a small random subset of these Pauli
operators. We will now generalize this strategy to work
with an arbitrary pure state �.

We will construct an estimator for trð��Þ as follows.
Select k 2 f1; . . . ; d2g at random with probability [6]

PrðkÞ ¼ ½��ðkÞ�2: (3)

By measuring the expectation value of the Pauli observable
Wk, we can estimate ��ðkÞ, up to some finite precision
which we will discuss later. For the time being, let us
suppose we can measure ��ðkÞ perfectly. We then con-
struct the estimator

X ¼ ��ðkÞ=��ðkÞ: (4)

It is easy to see that EX ¼ trð��Þ (where E denotes the
expected value over the random choice of k).

Now say we want to estimate trð��Þ with some fixed
additive error " and failure probability �. We repeat the
above process ‘ ¼ d1=ð"2�Þe times: we choose k1; . . . ; k‘
independently, which give independent estimates
X1; . . . ; X‘, and we let Y ¼ 1

‘

P
‘
i¼1 Xi. By Chebyshev’s

inequality [7], Y satisfies

Pr½jY � trð��Þj � "� � �: (5)

To complete the description of our method, we show
how the ideal ‘‘infinite-precision’’ estimator Y can be
approximated by an estimator ~Y that uses a finite number
of copies of the state �. Given any choice of k1; . . . ; k‘, we
proceed as follows. For each i ¼ 1; . . . ; ‘, we will use mi

copies of �, where we set

mi ¼
�

2

d��ðkiÞ2‘"2
logð2=�Þ

�
: (6)

(Note that mi depends on ki.) We measure the Pauli ob-
servable Wki on each of these copies of �, and get mea-

surement outcomes Aij 2 f1;�1g (j ¼ 1; . . . ; mi). Note

that EAij ¼
ffiffiffi
d

p
��ðkiÞ (taking the expectation over the

random measurement outcomes). Let

~X i ¼ 1

mi

ffiffiffi
d

p
��ðkiÞ

Xmi

j¼1

Aij: (7)

Finally, we let ~Y ¼ 1
‘

P
‘
i¼1

~Xi. This is our estimate for Y.

(Note that E ~Y ¼ Y.) By Hoeffding’s inequality [7], ~Y has
additive error " and failure probability �:

Pr½j ~Y � Yj � "� � �: (8)

We can then conclude that, with probability � 1� 2�,
the fidelity Fð�;�Þ lies in the range [ ~Y � 2", ~Y þ 2"].
Our method uses ‘ ¼ d1=ð"2�Þe Pauli observables, inde-

pendent of the size of the system. It requires m copies of
the state �, where m ¼ P

‘
i¼1 mi. Though this depends on

the random choices ki, we have

E ðmiÞ ¼
X
ki

½��ðkiÞ�2mi � 1þ 2d

‘"2
logð2=�Þ; (9)

and hence the expected number of copies satisfies

E ðmÞ � 1þ 1

"2�
þ 2d

"2
logð2=�Þ: (10)

By Markov’s inequality, m is unlikely to exceed its expec-
tation by much: Pr½m � t � EðmÞ� � 1=t, for all t � 1.
Example: The W state.—Suppose our desired state � is

the W state, i.e., the uniform superposition over computa-
tional basis states where a single qubit is j1i and the rest are
j0i, as previously considered in [3,4]. To apply our method,
we need to sample Pauli operators from the probability
distribution (3). It is straightforward to give a short formula
for these probabilities, and an explicit algorithm that does
the sampling in polyðnÞ time [7].
The distribution for a W state is quite different from

what one would expect for a Haar-random quantum state.
For a random state, one expects most of the Pauli matrices
to occur with probability �1=d2, but for the W state, most
of the Pauli matrices have probability 0, and all the nonzero
probabilities are at least 1=n2d. This is an example of a
well-conditioned state. As we now show, our method re-
quires fewer resources for such states.
Well-conditioned states.—We say that a state � is well

conditioned with parameter � if for all k, either trð�WkÞ ¼
0 or jtrð�WkÞj � �. For example, stabilizer states (includ-
ing the GHZ state) and the W state are well conditioned
with � ¼ 1 and � ¼ 1=n, respectively, and Dicke states
with k excitations have � ¼ �ð1=nkÞ. When � is well
conditioned, our method requires a smaller number of
measurement settings, as well as fewer copies of the actual
state �. Note first that the estimator X is bounded: jXj �
1=�. Now we can use the stronger Hoeffding inequality for
Eq. (5), and we can choose the number of measurement

settings to be ‘ ¼ Oðlogð1=�Þ
�2"2

Þ. Thus, the dependence on � is

exponentially better, at a cost of a factor of 1=�2.
The total number of copies used in the procedure, m, is

bounded in expectation by (10). For well-conditioned
states, we can prove a much stronger bound that

holds with certainty: mi � 1þ 2 logð2=�Þ
�2‘"2

, and hence m �
Oðlogð1=�Þ

�2"2
Þ. In particular, when � is a stabilizer state, m is

independent of the size of the system; when � is the W
state, m is only quadratic in the number of qubits n.
Truncating bad events.—For an arbitrary pure state �, it

is possible to modify our protocol so that m is always

bounded by Oð 1
"2�

þ d logð1=�Þ
"2

Þ. The idea is to construct a

nearby �0 which is well conditioned with � ¼ Oð1= ffiffiffi
d

p Þ,
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by truncating small values of ��ðkÞ. This eliminates the

bad choices of k that cause m to be large, at the expense of
introducing a small bias into the fidelity estimate [7].

Dephasing and depolarizing noise.—Our method also
performs better if one makes some mild assumptions about
the noise in the system. For an arbitrary pure state �,
suppose the actual state � is given by � ¼ Eð�Þ, where E
is some quantum process that shrinks the characteristic
function, i.e., for all k, j�Eð�ÞðkÞj � j��ðkÞj. For example,

dephasing and depolarizing noise both do this. Again, this
implies that jXj � 1; hence, we can use a smaller number

of measurement settings, ‘ ¼ Oðlogð1=�Þ
"2

Þ.
Comparison with full tomography.—We have shown that

it is possible to estimate the fidelity of an arbitrary pure
state using Pauli measurements onOðdÞ copies of the state.
(In this discussion, let us fix the accuracy " and failure
probability � to be constant.) How good is this result? We
argue that our protocol is more efficient than full tomog-
raphy by a factor of d. By tomography, we mean any
procedure that distinguishes arbitrary quantum states
with accuracy �, so that for every pair of states � and �
with Fð�;�Þ � 1��, the procedure returns different out-
puts for � and �.

First, as a toy example, consider what is possible using
arbitrary quantum operations. Fidelity estimation of a pure
state can then be done withOð1Þ copies using the swap test
[8], while full tomography requires �ðd=poly logdÞ cop-
ies, by Holevo’s theorem [9] (see [7]).

In the more realistic situation where only Pauli measure-
ments are allowed (and one cannot perform joint measure-
ments on more than one copy of the state), fidelity
estimation uses OðdÞ copies. We now prove that full to-
mography requires at least�ðd2= logdÞ copies. The idea of
the proof is as follows (details in [7]). First, we construct a

set of 2�ðdÞ quantum states j�ii that are almost orthogonal
(for all i � j, jh�ij�jij2 < 1��), and whose Pauli ex-

pectation values are small (for all i and k with Wk � I,

jh�ijWkj�iij � �
ffiffiffiffiffiffiffiffiffiffi
logd

p
=

ffiffiffi
d

p
). (This is done using repeated

applications of Levy’s lemma [7,10].)
Now suppose there is some tomography procedure that

can distinguish these states, given t copies. This implies the
existence of a classical protocol for transmitting �ðdÞ
bits of information over a particular noisy channel E.
Intuitively, Bob encodes an�ðdÞ-bit message i by sending
a string of�1 bits through the channel E, in such a way that
when Alice receives these bits, they have the same distri-
bution as the measurement outcomes she would have ob-
tained by measuring Pauli observables on the state j�ii.
Then Alice uses the tomography procedure to reconstruct
j�ii and extract the message i. One can show that the
channel E has capacity O½ðlogdÞ=d� (even allowing feed-
back from Alice to Bob) [11]. Then the converse to
Shannon’s (classical) noisy coding theorem [11] implies
that t � �ðd2= logdÞ.

Numerics.—In order to evaluate how tight our analysis is
for typical states, we simulated our protocol as follows.

We sampled Haar-random states of n ¼ 8 qubits and ran
our protocol with " ¼ � ¼ 0:05 (and ‘ ¼ 1

"2�
) where the

true state was created by subjecting the ideal state to
independent 10% depolarizing noise. The residual error
(Y-F) and the total number of copies m are plotted as
histograms in Fig. 1. We see that the accuracy is always
well behaved, and the total number of copies, excepting a
few bad events (for which our truncation procedure ap-
plies), is typically close to the average.
We also compared our method to a recent ion trap

experiment, in which an 8-qubitW state was verified using
full tomography [12]. Under the plausible assumption
that dephasing noise is dominant, we would use our pro-
tocol with " ¼ 0:03, � ¼ 0:10, and ‘ ¼ dlogð1=�Þ="2e.
Assuming the realistic parameters of 20 ms to perform
one measurement and 400 ms to reconfigure a new mea-
surement basis, we would obtain a fidelity estimate accu-
rate to within�1:2% using just 80 minutes of experiments
and a few seconds of classical processing; this compares
very favorably with the 10 hours of experiments and one
week of postprocessing carried out in [12].
Extension to channels.—We now extend our method to

unitary quantum channels. Let U be the desired channel
corresponding to some unitary evolution U, i.e., U: �
U�Uy. Let E be the actual channel. We will estimate the
entanglement fidelity, given by Fe ¼ trðUyEÞ=d2 (withU
and E treated as matrices acting via left multiplication).
Most of the analysis for channels is exactly analogous to

the case of states. The main difference is that we may also
input a state to the channel as well as choose how to
measure at the output. Thus, the characteristic function
for a channel E is defined by �Eðk; k0Þ ¼ 1

d tr½WkEðWk0 Þ�,
which depends on two indices. The probability distribution
from which we sample indices is analogous, Prðk; k0Þ ¼
1
d2
½�Uðk; k0Þ�2, and so is our primary estimator: X ¼

�Eðk; k0Þ=�Uðk; k0Þ, for which we have EX ¼ Fe. Now
given ‘ independent samples from our probability distri-
bution ðk1; k01Þ; . . . ; ðk‘; k0‘Þ, we compute X1; . . . ; X‘, and let

Y ¼ 1
‘

P
‘
i¼1 Xi. Then choosing ‘ ¼ d1=ð"2�Þemeans that Y

is an estimate of Fe which is accurate to within " with a
failure probability at most �.

FIG. 1 (color online). Left: The residual error has a standard
deviation of 1.8%. Right: Most states use only a typical number
of copies, with just 0.1% of trials using more than 4 times the
expected number of copies, as shown in the inset.
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The main difference between states and channels comes
in how we estimate Xi for a given sample (ki, k

0
i). We will

still measure Wki at the output, but how can we simulate

inputting Wk0i into the channel? The key insight is that we

can simply sample from states in the eigenbasis ofWk0i and

put these states into the channel. Note that these states can
always be chosen to be tensor products of local Pauli
eigenstates, so no entangling gates are required.

The total number of uses of the channel is bounded in

expectation by EðmÞ ¼ O½ 1
"2�

þ d2

"2
logð1=�Þ�. Statements

about well-conditioned channels and truncation also hold
in analogy with states [7].

Benchmarking quantum circuits.—One application of
the above protocol is to evaluate experimental implemen-
tations of large quantum circuits: our method allows one to
directly measure the entanglement fidelity and average
fidelity of the entire circuit, rather than inferring it from
tomography performed on individual gates. This is impor-
tant because as circuits scale up, correlated noise poten-
tially becomes an issue (cf. Ref. [13]).

The relationship between Fe and the Haar-average fidel-
ity is captured by the formula [14]

Favg ¼
Z

dcFðUðc Þ; Eðc ÞÞ ¼ dFe þ 1

dþ 1
: (11)

Thus, our method also gives us a direct measure of
the typical performance of the channel, similar to what is
achieved in other random benchmarking schemes [15–17].
Moreover, one can also prove that the worst-case behavior
(as quantified by the diamond norm [18]) is bounded by
4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fe

p
[19], so that for small high-fidelity gates,

average and worst-case behavior nearly coincide.
Clifford circuits.—Clifford circuits (those consisting of

controlled-NOT, Hadamard, and phase gates) are key com-
ponents in many schemes for quantum error correction,
and become universal for quantum computation when
augmented with certain state preparations [20,21]. For a
Clifford circuit U, the characteristic function is given by
�Uðk; k0Þ ¼ 1 [when Wk ¼ UðWk0 Þ] and 0 otherwise.
Sampling only requires that we pick k0 2 f1; . . . ; d2g uni-
formly at random, then use the Gottesman-Knill theorem to
efficiently compute the k such thatWk ¼ UðWk0 Þ. Clifford
circuits are well conditioned, so our method needs fewer
measurement settings and uses of the channel, namely,
‘ � O½ 1

"2
logð1=�Þ� and m � O½ 1

"2
logð1=�Þ�, which is

independent of the number of qubits and gates (see also
Ref. [22]).

Outlook.—We have presented a general method for cer-
tifying pure states and unitary quantum channels, which
requires only Pauli measurements and is faster than full
tomography by a factor of d. In common cases such as
stabilizer states, the W state, and Clifford circuits,
our method requires even fewer resources (constant or
polynomial in the number of qubits), and it provides an
easy recipe to generalize beyond these examples.

Looking beyond fidelity estimation, it would be inter-
esting to directly estimate and bound an entanglement
measure [23], which would obviate the need for an entan-
glement witness. One may also compare our method with
recent proposals for tomography for restricted classes of
quantum states [24–27]. Another important direction is to
find better techniques for sampling the importance-
weighting distribution PrðkÞ for different classes of states.
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